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Abstract

about its invasion and metastasis mechanism so far.

Background: Gallbladder cancer (GBC) is an extremely malignant tumor with a high mortality rate. Little is known

Methods: To identify the driver genes in GBC metastasis, we performed a mRNA microarray of metastatic GBC and
paired non-tumor samples, and found PLEK2 was markedly upregulated in GBC tissues. Next, the expression of
PLEK2 in GBC were examined in a larger cohort of patients by gRT-PCR, western blot and IHC staining. The
clinicopathologic correlation of PLEK2 was determined by statistical analyses. The biological involvement of PLEK2
in GBC metastasis and the underlying mechanisms were investigated.

Results: In this study, we found that PLEK2 had higher expression in GBC tumor tissues compared to non-
cancerous adjacent tissues and cholecystolithiasis tissues. The clinicopathologic analyses showed PLEK2 expression
was positively correlated with tumor TNM stage, distant metastasis and PLEK2 was an independent predictor of
overall survival (OS) in GBC patients. The cellular function assays showed PLEK2 promoted GBC cells migration,
invasion and liver metastasis in mouse model via the regulation of epithelial-mesenchymal transition (EMT) process.
Our mass spectrum and co-immunoprecipitation (co-IP) assays demonstrated that PLEK2 could interact with the
kinase domain of EGFR and suppress EGFR ubiquitination mediated by c-CBL, leading to constitutive activation of
EGFR signaling. Furthermore, RNA-sequencing and gRT-PCR results demonstrated chemokine (C-C motif) ligand 2
(CCL2), a target gene downstream of PLEK2/EGFR signaling, mediated the motility-promoting function of PLEK2.

Conclusions: On the basis of these collective data, we propose that PLEK2 promotes the invasion and metastasis of
GBC by EGFR/CCL2 pathway and PLEK2 can serve as a potential therapeutic target for GBC treatment.
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Background

Gallbladder cancer (GBC) is the most common tumor in
biliary tract disease. The median survival is less than
1 year and overall survival rate is about 17.8-21.7%
[1, 2]. The prognosis of GBC is poor due to its high
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propensity to invasion and metastasis. Only 15-47%
diagnosed GBC patients can be treated by surgery,
while most of GBC patients miss the chance of sur-
gery because of early metastasis [3, 4]. GBC can
spread by lymph node metastasis, adjacent liver metas-
tasis, vascular metastasis, trans-peritoneal metastasis and
neural metastasis [5, 6]. However, molecular mechanisms
involved in GBC metastasis are still poorly understood.
Recent studies describe 20 to 59% of GBC shows the K-
ras or ERBB mutations which may contribute to the ma-
lignant phenotype of GBC cells [7]. But the situation may
be different in other GBC patients who don’t carry K-ras
or ERBB mutations.
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To identify the driver genes in GBC metastasis, we
performed a mRNA microarray analysis of metastatic
GBC and paired non-tumor samples and found several
genes upregulated, including pleckstrin-2 (PLEK2).
PLEK2 is a 353 amino acid protein with 2 pleckstrin
homology (PH) domains and a disheveled—Egl-10—pleck-
strin (DEP) domain [8]. Unlike Pleckstrinl (PLEK1),
which has homology to PLEK2 and restricted in immune
cells, PLEK2 has been detected in various tissues [8].
PLEK2 can redistribute the actin within cells and cause
more microvilli and large lamellipodia with ruffle forma-
tion, inducing the cell spreading. In addition, PLEK2 can
interact with PI3K (phosphatidylinositol 3-kinase) lipid
products like PI (3,4,5) P3 and PI (3,4) P2 [9, 10]. Upon
the stimulation of the T-cell receptor a4fl, PLEK2
moves to the cell membrane with the help of its connec-
tion with PI3K lipid products [9, 10]. Recently, PLEK2
was found to play crucial roles in cancer metastasis and
progression. Naume et al. found PLEK2 expression was
correlated with luminal A type breast cancer cells
disseminating to bone marrow and the disseminated
tumor cell status predicted clinical outcome [11]. Mean-
while, a large whole blood-based transcriptome analysis
identified PLEK2 expression was the strongest gene to
distinguish CD45~ subsets melanoma patients from
healthy people. Transcriptome profiling of PLEK2
expression in whole blood cells could be used as early
detection of melanoma [12]. Altogether, the role of
PLEK2 in tumor metastasis is being recognized grad-
ually, but the clear mechanism of how it works is poorly
understood. Moreover, to our knowledge, the role of
PLEK?2 in GBC has not been studied before.

Our protein—protein interaction analysis suggests that
PLEK2 can interact with EGFR. Whether PLEK?2 is in-
volved in EGFR activation process is what we deal with
in this study. EGFR is a 170 kDa receptor tyrosine kinase
and widely expressed in numerous tumors [13]. EGFR
aberrant activation has been taken as a leading cause of
malignant transformation and cancer metastasis [14, 15].
Numerous studies show patients with high expression of
EGER tend to have short survival time. So far, the mech-
anism of EGFR aberrant activation has not been fully
understood. The oncogenic activation of EGFR can be
induced by various mechanism, such gene mutation,
transcriptional overexpression, chromosomal transloca-
tion or defective degradation of EGFR [16, 17]. Lots of
EGER tyrosine kinase inhibitors (TKIs) and monoclonal
antibodies have been used in clinical treatment [18, 19].
However, an increasing number of de novo and acquired
drug resistance events have been identified [20]. More-
over, there are few studies concerning the role of EGFR
in GBC progression.

In this study, we provided evidences both in vitro and
in vivo that PLEK2 promoted GBC cells migration,
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invasion and liver metastasis via the regulation of epithelial-
mesenchymal transition (EMT) process. Additionally,
PLEK2 had higher expression in GBC tumor tissues com-
pared to cholecystolithiasis tissues and high PLEK2 expres-
sion was positively correlated with liver metastasis and
prognosis in GBC patients. Mechanical investigations veri-
fied that PLEK2 could combine with EGFR and suppress
EGFR ubiquitination mediated by c-CBL, leading to consti-
tutive activation of EGFR signaling. Furthermore, we found
chemokine (C-C motif) ligand 2 (CCL2) mediated the
motility-promoting function of PLEK2. In conclusion, our
study demonstrated that PLEK2 promoted the invasion and
metastasis of GBC by EGFR/CCL2 pathway.

Materials and methods

Patients

Tumor samples and paired normal samples were collected
from GBC patients who underwent surgical resection and
postoperative adjuvant chemotherapy. Totall49 GBC
tumor and 149 cholecystolithiasis samples were collected
at the Department of Pathology, Renji Hospital, from
January 2004 to February 2015. The 149 GBC tumor and
149 cholecystolithiasis tissues were used for tissue micro-
array, the 29 pairs of the fresh primary GBC tissues and
paired non-tumorous tissues were used for qRT-PCR and
the 14 pairs of tissues were used for western blotting as-
says. Medical records and Follow-up data were obtained
from the questionnaires and patients’ medical records of
the hospital. This project was approved by the Ethical
Committee of Renji Hospital, Shang Hai Jiao Tong Uni-
versity School of Medicine.

Immunohistochemistry (IHC)

Total 149 GBC tumor samples were stained with the
PLEK2 (Proteintech), CCL2 (Proteintech) and EGFR
(Santa Cruz) antibody. The staining was scored as the
intensity of the positive staining (0 - negative, 1 - weak,
2 - moderate, 3 - strong) multiplied by the staining areas
(0 = negative, 1 =1 —9%, 2 = 10—39%, 3 =40 —69%, and
4 =70 —100%). These scores were independently deter-
mined by two pathologists.

Cell lines, cell culture and construction of stable cell lines
Human GBC cell line GBC-SD and HEK 293 T cells
were purchased from the Cell Bank of the Chinese
Academy of Sciences. Human GBC cell line NOZ was
obtained from Xinhua hospital (Shanghai, China). HEK
293 T and GBC-SD cells were cultivated in RPMI-1640
medium (GibcoBRL, Gaitherburg, MD, USA) supple-
mented with 10% fetal bovine serum (GIBCO) in an
atmosphere consisting of 5% CO2 and 37 °C. Willian’s E
medium was used in NOZ cells. The PLEK2 knockdown
and overexpression cells were all constructed as stable cell
lines. The Flag-tagged PLEK2 were cloned into into
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pCDH-CMV plasmid (System Biosciences, CA, USA).
The PLKE2 shRNA was constructed by Shanghai Gene-
Pharma Medical Biotechnology Company. PCDH-flag-
PLEK2 sense: 5'- TGCTCTAGAGCAATGGATTA-
CAAGGA TGACGACGATAAGGAGGACGGCGTGCT-
CAAGGA -3'; PCDH-flag-PLEK2 antisense: 5'- CCGG
AATTCCGGTCATGTTAGCTTTTTGATAGCTTCAAT
C - 3'. The sense sequence of PLEK2 shRNA was: TGCT
GAGAGCTACAAAAAG; The sequence of the PLEK2
shRNA was the following: 5'-TGCTGTTGACAGTGAGC
GCTTGCTGAGAGCTACAAAAAGATAGTGAAGCCA
CAGATGTATCTTTTTG TAGCTCTCAGCAAATGCC
TACTGCCTCGGA-3'. The detailed methods of transfec-
tion and infection were previously described [21].

Quantitative real time PCR (qRT-PCR)

Total RNA was isolated from GBC tissues and cell lines
using Trizol RNA isolation reagent (Invitrogen) and re-
versely transcribed to cDNA with a cDNA Synthesis kit
(Takara, Shiga, Japan). qRT-PCR was used to detected
the gene expressions with SYBR Premix Ex Taq (Takara,
Shiga, Japan). The primers were as follows:

PLEK2(F: 5'- TGGAGTTAAGTGGCACGGTG -3'; R
5'- GAGCAGACACGAGTGAACCA -3’); B-actin(F:5'-
GGACTTCGAGCAAGAGATGG -3';R:5'- AGCACTGT
GTTGGCGTACAG-3"); EGFR(F: 5'- CTACAACCCCAC
CACGTACC-3’; R: 5'-CGCACTTCTTACACTTGCGG-
3"); CCL2(F: 5'- AGCAGCAAGTGTCCCAAAGA -3’5 R:
5'- TTGGGTTTGCTTGTCCAGGT-3'); ARHGDIB(F: 5'-
ACTGGAGATCTGGAAGCCCT -3 R 5'- CCTIG
TAGGTGTGCTGAACGT-3');

CNN3(F: 5'- ACGGGACTAGGAGGCATCTT-3'; R:
5- GAGTTGTCCACCGGCTGTAA -3'); FGD4(F: 5'-
TCCCTGGACTGGAATGATGC-3"; R: 5'- CCGAGCA
GCTAGTTTGAGGA-3"); NEXN(F: 5'- AGAGAACG
GAGGAGGAACGA-3’; R: 5'- TGTCCTCAATCTGTT-
CAGCCC -3");

WIPF1(F: 5'- GCTTTGGGAGGAGGCTCAAT-3’; R:
5- TGTTCTGAGGAGGAGGAGGG -3'); ARRBI(F:
5'- CTCATGTCGGACAAGCCCTT-3; R: 5'- GGGC
ACTTGTACTGAGCTGT-3"); TWISTL(F: 5'- GTCC
GCAGTCTTACGAGGAG -3'; R: 5'- GCCAGCTTGA
GGGT CTGAAT -3'); SLUG(F: 5'- GCTGGCCAAA-
CATAAGCAGC -3’5 R: 5'- CCTTGAAGCAACCAGGG
TCT -3°’); ZEB1(F: 5'- ACTTTAGTTGCTCCCTGTGC
A-3"; R: 5'- CGATTACACCCAGACTGCGT -3);

ZEB2(F: 5'- CACACAAGCCAGGGACAGAT-3'; R:
5-ACGTTTCTTGCAGTTTGGGC -3'); SNAIL(F: 5'-
ACCACTATGCCGCGCTCTT-3’; R: 5'- GGTCGTAGG
GCTGCTGGAA-3").

Coimmunoprecipitation
Cells were transfected with the indicated constructs for
48h and then cells were dissolved in IP lysis buffer
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(Thermo Fisher, Inc) with protease inhibitor cocktail
(Sigma) and PMSF (Sigma) for 1h at 4°C. After centri-
fugation at full speed for 20 min, cleared supernatant
were gently rotated with antibodies and protein A beads
(Invitrogen) for 4h at 4°C. Then beads were washed
four times with IP lysis buffer. The beeds were eluted in
1X SDS buffer. Primary antibodies were as followings:
anti-PLEK2 (Proteintech), anti-EGFR (Cell Signal Tech-
nology), anti-IgG (Abcam), and anti-Flag (Sigma).

Mass spectrometry

The analyses were performed in an HPLC system (Easy-
nLC1000, Thermo Fisher Scientificc, USA) and mass
spectrometer (Orbitrap Elite, Thermo Fisher Scientific,
USA). A 15-cm dish of Flag-PLEK2 overexpression NOZ
cells and control cells were collected. The sample were
prepared as described in the method of coimmunopreci-
pitation. Eluates were subjected to western blot and then
stained by coomassie brilliant blue.

Cell migration and invasion assays

GBC cells were performed transwell assay. For migration
assay, GBC cells were seeded into the 24-well transwell
chamber at a density of 4 x 10* cells in 100 ul serum-
free medium with 8-pum pore size polycarbonate mem-
brane (Corning, NY, USA). 600ul medium containing
10% FBS was added to the lower chamber. 4% parafor-
maldehyde was used to fix the migrated cells and coo-
massie brilliant blue was used to stain the cells after 16
h. For invasion assay, 8 x 10* cells were maintained in
the matrigel (BD, NY, USA) coated chamber for 48
h.Three independent experiments were carried out.

Immunofluorescence (IF)

2x 10* GBC-SD cells were plated in 24-well plates cov-
ered with sterile coverslips. After12 hours, cells were
starved 16 h prior to 50 ng/ml EGF incubation with 10
min. In the control group, cells were not treated with
EGE. Then the primary and matched secondary antibody
diluted in PBS containing 2% BSA were used to stain
PLEK2. Next, we washed the cells with PBS three times
and stained cell nuclei with 4, 6-diamidino-2-phenylin-
dole (DAPI). Three independent experiments were car-
ried out.

Xenograft studies in nude mice

4 x10° NOZ cells diluted in 100 ul PBS were inocu-
lated subcutaneously into the right lower regions of 4-
week-old male nude mice. The mice were sacrificed after
7 weeks from the inoculation. The subcutaneous xeno-
grafts and livers were dissected and made into sections
for haematoxylin and eosin (H&E) staining. All proce-
dures were performed in accordance with the regula-
tions of Renji Hospital, School of Medicine, Shanghai
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Jiao Tong University. All the procedures were according
to the regulations of the RenJi Hospital of Shanghai Jiao
Tong University.

Statistical analysis

Data are expressed as mean + SEM. An unpaired two-
tailed Student’s t test and Pearson’s X2-test was used to
analyze the variance of each experimental group.
Kaplan—Meier method and log-rank test were used to
estimate the survival probabilities. Cox proportional haz-
ard regression model was performed in univariate and
multivariate analysis. P < 0.05 was considered statistically
significant.

Results

PLEK2 was up-regulated in gallbladder cancer and
correlated with poor prognosis

To identify the driver genes in GBC metastasis, we made
a mRNA microarray consisted of six pairs of metastatic
GBC and non-tumor samples (Fig. 1a). Analysis the gene
expression differences and its distribution in human can-
cer cells by bioinformatics data (http://www.broadinsti-
tute.org), we found that PLEK2, one of the most
upregulated genes in GBC compared with paired non-
tumor tissues, had a relative high expression in biliary
tract cancer (Additional file 1: Figure S1A). qRT-PCR
data of 29 pairs of GBC and non-cancerous adjacent tis-
sues verified PLEK2 mRNA level was up-regulated in
GBC compared with non-cancerous adjacent tissues
(Fig. 1b). Additionally, we examined PLEK2 protein level
in 14 pairs of GBC and non-tumor tissues using western
blot analysis which showed most GBC tissues had higher
PLEK2 protein level than the normal control (Fig. 1c).
Similar results were also achieved in gallbladder tissues
microarrays including 149 GBC and 149 cholecysto-
lithiasis tissues by IHC analysis. As shown in Fig. 1d,
PLEK2 expression was higher in GBC tissues than that
in cholecystolithiasis tissues (P < 0.05). Altogether, these
results suggested PLEK2 expression was elevated in
GBC tissues. Besides, higher levels of the PLEK2 protein
was found to positively correlate with TNM stage and
liver metastasis (Table 1).

We next sought to identify the clinicopathologic
significance of PLEK2 in GBC, we investigated the rela-
tionship between PLEK2 expression and overall survival.
Then we classified the GBC tissues into PLEK2 high and
PLEK2 low groups according to PLEK2 expression level.
The results showed PLEK2 high group had a signifi-
cantly shorter overall survival compared with PLEK2
low group (HR:2.05, 95%CI:1.43-2.94, P < 0.001, Fig. 1e).
Moreover, PLEK2 can be an independent factor for
prognosis by multivariate analysis (Fig. 1f). All these
data suggest PLEK2 expression was elevated in GBC and
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might promote the progression of GBC by enhancing
the motility of GBC cells.

PLEK2 promoted the migration, invasion and metastasis
of GBC cells

To investigate the causal role of PLEK2 in GBC progres-
sion, we constructed PLEK2 down-regulation NOZ and
GBC-SD cells (NOZ-shPLEK2, GBC-SD-shPLEK2, re-
spectively), also PLEK2 overexpression NOZ and GBC-
SD cells (NOZ-PLEK2, GBC-SD-PLEK2, respectively)
(Additional file 2: Figure S2A). Cell proliferation assay
showed no difference between PLEK2 knockdown and
control cells (Additional file 3: Figure S2B). Meanwhile,
transwell migration assay indicated that PLEK2 knock-
down or overexpression significantly inhibited or pro-
moted cell migration in corresponding GBC cells,
respectively. Similar with the migration assay, transwell
invasion assay also showed the same results (Fig. 2a, c).
Therefore, these in vitro studies indicated that PLEK2
promoted GBC cells migration and invasion. In addition,
we investigated whether PLEK2 could promote GBC
tumor metastasis in xenograft models. In vivo studies
showed PLEK2 knockdown exhibited fewer liver meta-
static foci whereas PLEK2 overexpression displayed
more liver metastatic foci compared to the control group
(Fig. 2b, d, Additional file 9: Figuer S5).

Given some previous studies have shown the involve-
ment of PLEK2 in actin remodeling, we detected the
morphological change following PLEK2 knockdown or
overexpression. Consistent with previous studies, PLEK2
knockdown cells displayed small and round shape
whereas PLEK2 overexpression cells exhibited spindle-
like shape compared to control cells (Fig. 2e). The
change in the cell morphology might facilitate their mo-
tility. As EMT process plays indispensable role in tumor
metastasis, we investigated whether the function of PLEK2
in cell spreading promoted EMT process. As shown in
Fig. 3f, PLEK2 knockdown suppressed Fibronectin and N-
cadherin, whereas enhanced E-cadherin expression. On
the contrary, PLEK2 overexpression enhanced Fibronectin
and N-cadherin, whereas suppressed E-cadherin expres-
sion. Moreover, qRT-PCR got similar results in the mRNA
level (Additional file 4: Figure S2C).

PLEK2 interacted with EGFR

To further investigate the underlying mechanism by which
PLEK2 promoted GBC migration and metastasis, we per-
formed immunoprecipitation assay followed by mass spec-
trometry to identify PLEK2 interacting proteins (Fig. 3a).
We found EGER as one of the potential PLEK2 interacting
protein from the identified list of proteins. The following
co-IP assay verified the correlation between PLEK2 and
EGFR (Fig. 3b). Immunoprecipitation of endogenous
PLEK2 detected the presence of EGFR and the reciprocal
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co-IP also confirmed the correlation between PLEK2 and
EGER (Fig. 3c). EGFR has four functional domains: extra-
cellular ligand-binding domain, transmembrane domain,
and C-terminal regular domain [22]. To define the PLEK2
binding site, we constructed different truncates of EGFR
and performed co-IP with PLEK2 (Fig. 3d). The results

showed PLEK2 bind with the intracellular tyrosine kinase
domain of EGFR (Fig. 3e).

As EGER is a transmembrane receptor tyrosine kinase,
the localization and kinetics of EGFR have pivotal im-
pacts on its function and signaling. A number of differ-
ent ligands, including EGF-like molecules, activate EGFR
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Table 1 Correlation of PLEK2 expression with the
clinicopathological features of GBC

PLEK2(High) PLEK2 (Low) P value
N=83 % N=66 %
Sexual 0623
Male 27 0.181 19 0.128
Female 56 0376 47 0315
Age (years) 0271
<65 39 0.262 37 0.248
>65 44 0.295 29 0.195
Tumor size (cm) 0.256
<3 35 0.235 34 0228
>3 48 0.322 32 0.215
T 0.010*
1-2 9 0.060 18 0.121
3-4 74 0497 48 0322
N 0.195
0 48 0322 45 0302
1-2 35 0.235 21 0.141
M 0.841
No 82 0.550 64 0430
Yes 1 0.007 2 0.013
TNM stage 0.010*
-l 9 0.060 18 0.121
-1V 74 0497 48 0322
Tumor location 0.336
Body or bottom 73 0490 62 0416
Neck or duct 10 0.067 4 0.027
Liver metastasis 0.014*
No 44 0.295 48 0322
Yes 39 0.262 18 0.121

*P < 0.05 was considered statistically significant
X2 test was performed

by binding to the extracellular domain. After EGF stimu-
lation, EGFR signaling cascades can be transduced. As
shown in Fig. 3f, PLEK2 migrated from the cytoplasm to
the cell membrane and formed a strong IF staining in
GBC cells membrane following EGF treatment. We
examined whether the binding between PLEK2 and
EGFR changed after EGF stimulation. Co-IP results
showed more PLEK2 protein bound to EGEFR after treat-
ing with EGF 10 or 30 min (Fig. 3g).

PLEK2 suppressed EGFR degradation

PLEK2 knockdown significantly reduced EGFR protein
level and PLEK2 overexpression markedly increased
EGER protein level by western blot analysis (Fig. 4a). In
addition, the IF results confirmed that PLEK2 overex-
pression increased EGFR expression (Additional file 5:
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Figure S4A). After protein synthesis inhibitor CHX treat-
ment for different time, EGFR expression was reduced
immediately in PLEK2 knockdown cells compared to
control cells (Fig. 4b, c), clearly indicating that knock-
down of PLEK2 reduced the half-life of EGFR. Given
that PLEK?2 altered only the protein but not the mRNA
levels of EGFR (Additional file 6: Figure S4B), we hypothe-
sized that PLEK2 mainly regulated EGFR protein stability,
not EGER synthesis or transcription. Previous studies have
demonstrated that EGFR protein degradation involved
both protein ubiquitination mediated proteasome degrad-
ation and lysosome mediated degradation. We treated
GBC cells with proteasome inhibitor MG132 and lyso-
some inhibitor chloroquine, separately. Western blot ana-
lysis revealed that PLEK2 mediated EGFR downregulation
could be rescued by MG132 (Fig. 4d), but not by chloro-
quine (Additional file 7: Figure S4C). Furthermore, we
performed ubiquitination assays to explore whether
PLEK2 was involved in the regulation of EGFR ubiquitina-
tion. The levels of ubiquitylated EGFR were detected and
were found to be increased in PLEK2 knockdown cells
(Fig. 4e).

To clarify the underlying mechanism by which PLEK2
regulated EGFR ubiquitination, we analyzed the ubiqui-
tin ligases of EGFR and found c-CBL was involved in
the biological function of PLEK2. We co-expressed c-
CBL, PLEK2 and EGFR in 293 T cells and performed co-
IP assay with Flag antibody. Interestingly, we observed
that PLEK2 inhibited the interaction between EGFR and
c-CBL (Fig. 4f). Further, we co-expressed Flag-c-CBL
and EGFR, together with increasing amount of Myc-
PLEK2 in 293 T cells, and performed co-IP assay with
Flag antibody. Consistence with the previous observa-
tion, increasing the amount of PLEK2 gradually inhibited
the binding between EGFR and c¢-CBL (Fig. 4g). In
addition, c-CBL could partially resist the increase in
EGFR levels resulting from PLEK2 overexpression
(Additional file 8: Figure S4D). All these results sug-
gested that PLEK2 suppressed EGFR degradation
through the competitive inhibition of the interaction
between EGFR and c-CBL.

Oncogenic effects of PLEK2 depended on EGFR pathways
Given that PLEK2 suppressed the expression of EGFR,
we wanted to determine whether PLEK2 regulated EGFR
downstream signaling pathways. PI3K/AKT, MAPK/ERK
and JAK/STAT were three main signaling pathways
modulated by EGFR [23]. Western blot analysis showed
PLEK2 knockdown reduced p-AKT, p-ERK and p-
STAT3, while PLEK2 overexpression increased p-AKT,
p-ERK and p-STAT3 expression (Fig. 5a, b). Further-
more, we increased EGFR levels in PLEK2 knockdown
cells and checked whether it could compensate for loss
of PLEK2. We found that increasing ectopic expression
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of EGFR in PLEK2 knockdown cells led to increased
NOZ cell migration and invasion (Fig. 5¢). The EGEFR in-
hibitor erlotinib reduced the migration and invasion of
PLEK2 overexpression cells (Fig. 5e). These results sug-
gested that PLEK2 promoted GBC cell motility via EGFR
signaling pathway. In addition, we also found that EGFR
ectopic expression increased p-AKT and p-ERK expres-
sion in PLEK2 knockdown cells, while erlotinib treat-
ment decreased p-AKT and p-ERK expression in PLEK2
overexpression cells (Fig. 5d, f). Thus, above results sug-
gested that oncogenic effects of PLEK2 depended on
EGEFR downstream signaling pathways.

CCL2 was a target gene downstream of PLEK2/EGFR
signaling

We performed an RNA-sequencing in PLEK2 knock-
down cells to identify the downstream targets respon-
sible for the biological function of PLEK2. Consistent
with previous studies, the cytoskeleton organization

genes were downregulated following PLEK2 knockdown
(Fig. 6a). Interestingly, chemokine (C-C motif) ligand 2
(CCL2), which was previously shown to be a target gene
of EGFR/STAT3 pathway and promoted migration and
invasion in numerous tumors, was also significantly de-
creased in PLEK2 knockdown cells [24, 25]. qRT-PCR
analysis  verified PLEK2 regulated cytoskeleton
organization genes including CCL2 expression in the
mRNA levels (Fig. 6b, c). Western blot analysis verified
PLEK2 knockdown markedly reduced CCL2 protein
levels, and PLEK2 overexpression increased CCL2 ex-
pression (Fig. 6d). The above qRT-PCR and western blot
analysis verified CCL2 was a target gene of PLEK2.
Meanwhile, silencing EGFR suppressed CCL2 expression
in both PLEK2 overexpression and control cells. Above
experiments suggests that CCL2 is a target gene of
PLEK2/EGFR/STAT3 signaling (Fig. 6e). In consider-
ation of the fact that CCL2 is a secreted protein, we ap-
plied enzyme-linked immunosorbent assay (ELISA) to
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detect the expression of secreted CCL2 in PLEK2 knock-
down and overexpression cells. ELISA assay showed
PLEK2 knockdown significantly reduced secreted CCL2
protein level, and PLEK2 overexpression remarkably in-
creased secreted CCL2 protein level (Fig. 6f). Then we
treated PLEK2 knockdown and control cells with 0.1pg/
mL recombinant CCL2 for 24 h to check whether CCL2
could compensate for loss of PLEK2. We found that ec-
topic CCL2 increased the migration and invasion of both
PLEK?2 knockdown and control cells (Fig. 6g). Moreover,
we found ectopic CCL2 could increase Fibronectin and
N-cadherin expression, while decrease E-cadherin
expression in both PLEK2 knockdown and control cells
(Fig. 6h). In addition, ectopic CCL2 increased

transcriptional factors (Twsitl and ZEB1) expression
and rescued the decreased expression of Twsitl and
ZEB1 following PLEK2 knockdown (Fig. 6i). Therefore,
these findings indicated that CCL2 was a target gene
downstream of PLEK2/EGFR signaling and PLEK2 or-
chestrated cytoskeleton rearrangement by virtue of
CCL2 secretion.

The prognostic value of combination of PLEK2 and EGFR

To evaluate the clinical relevance of PLEK2, EGFR and
CCL2, we performed IHC staining assays of the three
proteins in gallbladder tissues microarrays including 149
GBC. The results showed the three proteins had similar
staining intensity in the certain samples (Fig. 7a).
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Regression analysis showed a significant positive correl-
ation between the level of PLEK2 and the level of EGFR
or CCL2 in GBC tissues (Fig. 7b). Building on the previ-
ous data that PLEK2 promoted GBC metastasis and pro-
gression through EGFR signaling pathway, we wondered
if the combination of PLEK2 and EGFR could be used to
better predict GBC survival than either protein. Firstly,
we found EGFR high group had a significantly shorter
overall survival compared to EGFR low group (HR:1.86,
95%ClI:1.29-2.68, P < 0.001, Fig. 7c). Importantly, we also
found that patients with low expression of both PLEK2
and EGFR had a better prognosis than patients with high
expression of either one or two protein (PLEK2+/EGFR+
VS PLEK2-/EGFR-, P<0.001; PLEK2+/EGFR- VS
PLEK2-/EGFR-, P <0.001; PLEK2-/EGFR+ VS PLEK2
-/EGER-, P <0.001, PLEK2+ represents PLEK2 high ex-
pression group, EGFR+ represents EGFR high expression
group, Fig. 7d). Taken together, the combination of
PLEK2 and EGFR may serve to predict GBC survival
and as a therapeutic target in clinic.

Discussion

GBC is a malignant tumor with extremely poor progno-
sis. GBC metastasis is the main cause of GBC-related
mortality. However, its mechanism is still poorly under-
stood. To identify the driver genes in GBC metastasis,
we performed a mRNA microarray and PLEK2 was se-
lected for further functional studies. In the present
study, we demonstrated that PLEK2 was upregulated in
GBC tissues. High PLEK2 expression was correlated
with high TNM stage and liver metastasis. PLEK2 could
also serve as an independent predictor for overall sur-
vival of GBC patients. PLEK2 is little known before and
its relation with tumor metastasis is poorly understood.
A study showed PLEK2 expression was positively corre-
lated with luminal A type breast cancer cells disseminat-
ing to bone marrow [11]. Two recent studies
demonstrated that PLEK2 could regulate cytoskeleton
rearrangement, resulting in large lamellipodia with ruffle
formation and cell spreading [9, 10]. As cells move in a
motion of lamellipodia was necessary to EMT process,
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which was regarded as a potent driver conferring cells
with metastatic features [26, 27], we investigated whether
PLEK2 could promote EMT process and enhance GBC
cells migration. As shown in Fig. 2, we found PLEK2
dysregulation modulated EMT markers expression (E-
cadherin, N-cadherin and Fibronectin) and remodels cells
morphology, resulting in aberrant migration, invasion and
metastasis of GBC cells.

EGEFR degradation mechanism is not well understood.
It is generally thought that EGFR degradation requires
for ubiquitination of the receptor, endocytosis of the
receptor-ligand complex and finally degradation by both
proteasomal and lysosomal hydrolases [28]. EGFR

ubiquitination involves the recruitment of ubiquitin
ligases like c-CBL or CHIP, to form ligase-receptor
complexes [29, 30]. It is widely accepted that the E3
ubiquitin ligase c-CBL-mediated ubiquitination of the
receptor is critical for degradation of EGFR [31]. Inter-
estingly, in the present study, we demonstrated that
PLEK2 could bind with EGFR and subsequently inhib-
ited EGFR ubiquitination and proteasomal mediated
degradation. Moreover, we verified that c-CBL partici-
pated in the regulation of EGFR degradation by PLEK2.
As shown in Fig. 4, PLEK2 could suppress the binding
between c-CBL and EGFR, and the function of PLEK2
overexpression on EGFR was abolished by ¢-CBL ectopic
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J

expression. It has been reported that c-Cbl mainly in-
teracts with EGFR either directly through phosphory-
lated Tyr1045, or indirectly through Grb2 at Tyr1068
site [28, 32]. But all these binding sites are not in the

intracellular tyrosine kinase domain of EGFR. So PLEK2
may not directly compete with c-Cbl for EGFR binding at
Tyr1045 or Tyr1068 sites. Regulation of c-CBL activity in-
volves a complex interplay between c¢-CBL and its many
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interacting partners. For example, ITSN1 and CIN85
could bind c-CBL to stimulate its activity and enhance
EGER ubiquitylation [33, 34]. However, Spry2 could in-
hibit the interaction between c-CBL and EGFR by com-
petitive binding with c-CBL [35]. We speculated that
PLEK2 might regulate the c-CBL activity by disturbing the
interplay between c-CBL and its interacting partners.

One interesting question is how PLEK2 moves to the
cell membrane with EGF treatment. Although PLEK2
could bind to PIP2 and PIP3 of cell membrane by its PH
domain [9], it is still unknow that how PLEK2 moves to
the cell membrane. In this study, we found more PLEK2
protein bound to EGFR after EGF treatment. And inter-
estingly, intracellular tyrosine kinase domain of EGFR is
necessary for the interaction between PLEK2 and EGFR.
As it’s known that PLEK1 is a major substrate for pro-
tein kinase C (PKC) in platelets and leukocytes, and its
function in F-actin rearrangement is tightly regulated by
PKC-mediated phosphorylation [36]. Just like PLEK1, we
presume that EGFR may function as a kinase for PLEK2
and help activate the function of PLEK2. That whether

phosphorylation is the necessary step for PLEK2 func-
tion and whether EGFR is the major kinase to PLEK2
need further investigation.

The regulation of CCL2 expression by PLEK2 through
EGFR/STATS3 signaling is another striking finding of this
study. CCL2 is a member of the CC chemokine family
which regulates the chemoattraction of macrophages,
monocytes, and other inflammatory cells [37]. Recently,
CCL2 has been shown to be critical in tumorigenesis and
metastasis of numerous solid tumors. CCL2-CCR2 signal-
ing activation enhance metastasis-associated microenvir-
onment and cancer cells interaction, resulting in
extravasation, persistent growth of cancer cells and also
distant metastasis [24, 38—40]. It is demonstrated that
CCL2 induces EMT process dependent on the activation
of STAT?3 signal and p-STAT3 inhibition suppresses CCL2
expression, leading to reduced invasiveness of tumor cells
[41-43]. In this study, we found CCL2 was one of the crit-
ical downstream genes of PLEK2. We also demonstrated
that PLEK2 regulated EGFR/STAT3 signaling. All these
results suggested that PLEK2 regulated CCL2 expression
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through EGFR/STAT3 signaling. Previous studies indi-
cated CCL2 induced EMT process mainly through the ac-
tivation of transcription factor Snail [44, 45], but in our
study, excretive CCL2 protein could partially rescue the
inhibitory effects of PLEK2 knockdown by increasing
Twistl and ZEB1 expressions.

Taken together, PLEK2 activated EGFR/STAT3 signal-
ing, leading to CCL2 transcriptional promotion, and ex-
cretive  CCL2 enhanced GBC cells migration and
invasion in an autocrine form. On the other hand, data
of tissue microarray staining demonstrated that PLEK2,
EGFR and CCL2 were all activated and correlated with
each other in GBC tissues. By analysis the mRNA sequen-
cing data, we found that, in addition to CCL2, PLEK2
modulated the expression of cytoskeleton organization
genes, such as ARHGDIB, ARRB1, CNN3 and FGD4,
indicating that PLEK2 might promote the metastasis of
GBC by orchestrating inflammation network and cytoskel-
eton organization.

Conclusions

In summary, we have identified PLEK2 as a key pro-
moter of GBC metastasis, which plays vital roles in
EGFR ubiquitination and proteasomal mediated degrad-
ation. PLEK?2 allows for prolonged activation of EGFR,
leading to downstream CCL2 transcriptional overexpres-
sion and EMT process activation. The combination of
PLEK2 and EGFR may serve to predict GBC survival
and as a therapeutic target in clinic.
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