CORRECTION Open Access ## Correction to: Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid Mineko Terao^{1†}, Laura Goracci^{2,3†}, Valentina Celestini^{1†}, Mami Kurosaki¹, Marco Bolis¹, Alessandra Di Veroli², Arianna Vallerga¹, Maddalena Fratelli¹, Monica Lupi⁴, Alessandro Corbelli⁵, Fabio Fiordaliso⁵, Maurizio Gianni¹, Gabriela Paroni¹, Adriana Zanetti¹, Gabriele Cruciani^{2,3} and Enrico Garattini^{1*} ## Correction to: J Exp Clin Cancer Res (2019) 38:436 https://doi.org/10.1186/s13046-019-1438-y In the original publication of this article [1], the images of Figs. 4 and 5 were exchanged and the legends of the two figures did not correspond due to a typesetting error. The publisher sincerely apologizes for the inconvenience caused to the readers. The original article has been corrected. ## **Author details** ¹Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy. ²Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. ³Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy. ⁴Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy. ⁵Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy. ## Poforonco Terao M, et al. Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid. J Exp Clin Cancer Res. 2019;38:436. The original article can be found online at https://doi.org/10.1186/s13046-019-1438-v Full list of author information is available at the end of the article ^{*} Correspondence: enrico.garattini@marionegri.it $^{^\}dagger \text{Mineko Terao}$, Laura Goracci and Valentina Celestini contributed equally to this work. ¹Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy **Fig. 4** Effect of ATRA on the random motility of breast cancer cells. Biological triplicates of the indicated luminal (MDA-MB-361, MDA-MB-175VII and HCC-1419; marked in red) and basal (MDA-MB-157; marked in blue) cell lines. Cells were pre-treated with vehicle (DMSO) or ATRA. Each point is the Mean + SD of 40 cells. ***Significantly lower than the vehicle curve (p < 0.001 following two-way ANOVA Bonferroni post-test) (See figure on previous page.) **Fig. 5** ATRA effects on the levels of cardiolipins. **a** Biological triplicates of the indicated breast cancer cells were treated with vehicle (DMSO) or ATRA (10^{-6} M) for 48 h. Left: The box plots show the median \pm SD levels of cardiolipins (*CLs*). The number of different *CL* molecules identified by mass-spectrometry is indicated in parenthesis. Luminal cell-lines are marked in red and basal cell-lines are marked in blue. The luminal and basal cell-lines are ordered according to decreasing sensitivity to the anti-proliferative effect of ATRA from left to right, as indicated (decreasing *ATRA-score*). Right: The diagram indicates the correlations between the ATRA/DMSO ratio of the mean values calculated for CLs in each cell-line and the corresponding *ATRA-score*. **b** Biological triplicates of SK-BR-3 cells were treated with vehicle (DMSO) or ATRA (10^{-6} M) for the indicated amounts of time. The box plot shows the median \pm SD levels of cardiolipins (*CLs*). **c** Biological triplicates of *SK-BR-3* cells were treated with vehicle (DMSO) or the indicated concentrations of ATRA for 48 h. The box plot shows the median \pm SD levels of cardiolipins (*CLs*). *Significantly different (ρ < 0.05) from the corresponding vehicle treated control using the Student's t-test. **Significantly different (ρ < 0.01) from the corresponding vehicle treated control using the Student's t-test.