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Abstract

Background: Colorectal cancer is one of most common tumors in developed countries and, despite improvements
in treatment and diagnosis, mortality rate of patients remains high, evidencing the urgent need of novel
biomarkers to properly identify colorectal cancer high-risk patients that would benefit of specific treatments. Recent
works have demonstrated that the telomeric protein TRF2 is over-expressed in colorectal cancer and it promotes
tumor formation and progression through extra-telomeric functions. Moreover, we and other groups evidenced,
both in vitro on established cell lines and in vivo on tumor bearing mice, that TRF2 regulates the vascularization
mediated by VEGF-A. In the present paper, our data evidence a tight correlation between TRF2 and VEGF-A with
prognostic relevance in colorectal cancer patients.

Methods: For this study we sampled 185 colorectal cancer patients surgically treated and diagnosed at the Regina
Elena National Cancer Institute of Rome and investigated the association between the survival outcome and the
levels of VEGF-A and TRF2.

Results: Tissue microarray immunohistochemical analyses revealed that TRF2 positively correlates with VEGF-A
expression in our cohort of patients. Moreover, analysis of patients’ survival, confirmed in a larger dataset of patients
from TCGA, demonstrated that co-expression of TRF2 and VEGF-A correlate with a poor clinical outcome in stage I-
III colorectal cancer patients, regardless the mutational state of driver oncogenes.

Conclusions: Our results permitted to identify the positive correlation between high levels of TRF2 and VEGF-A as a
novel prognostic biomarker for identifying the subset of high-risk colorectal cancer patients that could benefit of
specific therapeutic regimens.
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Background
Colorectal cancer (CRC) is considered a very important
public health issue since it is the third most common
cancer type diagnosed in men and the second most
commonly occurring tumor in women [1]. Despite a
substantial improvement of diagnosis and treatment, it
still represents a major cause of tumor-related deaths
worldwide [2]. Notably, the most recent epidemiological
studies evidenced a gradual and continuous increase of
this malignancy over the past years with a global inci-
dence that, according to the World Health Organization
GLOBOCAN database, in the 2018 exceeded 1.8 million
of new cases, a trend that is predicted to still grow in
the future [3].
Treatment of CRC patients (stage III, IV and high risk

stage II) commonly consists in the surgical resection of
the tumor and fluoropyrimidine-based chemotherapy
(e.g. 5-fluorouracil (5-FU) or capecitabine) administered
alone or in combination with oxaliplatin (FOLFOX), Iri-
notecan (FOLFIRI) or both (FOLFOXIRI) [4]. Moreover,
addition of target therapy based on the administration of
antibodies against the vascular endothelial growth factor
(VEGF) or the epidermal growth factor receptor (EGFR),
has demonstrated to further improve the clinical out-
come of metastatic CRC patients [5]. Unfortunately, a
certain number of CRC patients has demonstrated to
not benefit of these therapeutic regimens [6].
Prediction of clinical outcome of CRC patients is

mainly based on the evaluation of tumor stage, lymph-
node positivity and presence of distant metastases [7].
Although these clinical criteria provide valuable prog-
nostic information and guide therapy decisions, the re-
sponse and outcome of individual patients is not fully
predictable. This problem is particularly relevant for cer-
tain patients (particularly stage II and III) that, inde-
pendently of their clinic-pathological characteristics,
show a quite variable clinical course, indicating the ur-
gent need of identifying novel biomarkers with clinical
relevance [8–10]. In the last few years, single genetic
characteristics – such as the mutational state of driver
oncogenes (e.g. KRAS, NRAS, BRAF) – and molecular
signatures based on somatic mutational profiling, were
proposed as prognostic criteria to detect patients at a
high risk of recurrence [11–13]. Moreover, genetic
events, gene-expression profile and the tumor micro-
environment were integrated to enable four consensus
molecular subtypes [14]. Despite the huge efforts done
for developing novel and effective prognostic criteria,
these molecular markers are difficult to integrate with
the current staging system.
Recently, telomere length has been accounted as a pu-

tative prognostic marker for solid tumors, included CRC
[15, 16]. Telomeres are specialized nucleoprotein struc-
tures, located at the terminal portion of chromosomes,

playing a central role in the maintenance of genomic in-
tegrity [17]. In humans, telomeres are composed of
TTAGGG tandem repeats of DNA associated with a
protein complex – Shelterin – constituted by six sub-
units (TRF1, TRF2, RAP1, TIN2, TTP1 and POT1) par-
ticipating in telomere protection and inhibition of
aberrant DNA damage response (DDR) [18]. Due to the
linear nature of human chromosomes, telomeres
undergo to progressive shortening during each cycle of
cell division. Finally, when telomeres reach a critical
length (Hayflick limit), they are no longer protected by
the Shelterin complex and cells enter into a state of rep-
licative senescence that, under normal conditions, can
leads to cell death [19]. On the contrary, when protect-
ive mechanisms driven by tumor suppressor genes (e.g.
TP53) are dysregulated, cells continue to proliferate by
inducing chromosomal instability [20]. Since telomere
erosion has been found accelerated in response to spe-
cific alterations of genes participating in the carcinogen-
esis of CRC (e.g. APC and MSH2), a marked telomere
shortening has been considered an early event of CRC
carcinogenesis [21]. Despite the reported observations
would support the idea of a direct implication of telo-
mere length in CRC, lack of solid evidences and a lim-
ited amount of available studies make its prognostic
relevance object of an extensive debate [21].
In contrast to telomere length, prognostic value of

Shelterin proteins has not extensively evaluated, so
far. Our laboratory is long-lasting involved in the
study of the telomeric proteins, with a particular
interest for Telomere Repeat binding Factor 2 (TRF2).
Besides its role in telomere maintenance, TRF2 has
been recently found to localize also outside telomeric
regions, where it can affect the expression of multiple
target genes [22–24]. TRF2 is regulated by the Wnt/
β-catenin pathway [25], is relevant in oncogenesis of
CRC [26–28], and is over-expressed in several human
malignancies [29–32], included CRC, in which levels
of TRF2 have been found to increase during the pro-
gression from normal mucosa to focal adenocarcin-
omas [24]. Moreover, recent experimental data from
our and other laboratories have evidenced a tight cor-
relation between TRF2 and the vascularization medi-
ated by VEGF-A [24, 33, 34]. VEGF-A – one of the
main mediators of angiogenic response – is not vali-
dated, per se, as a prognostic and predictive bio-
marker in CRC. Indeed, antiangiogenic therapies
(mainly based on the use of monoclonal antibodies
against VEGF-A) [35] are administered, independently
from evaluation of VEGF-A levels, to promote vessel
normalization, a process that – restoring proper
tumor perfusion and oxygenation – limits tumor cell
invasiveness and improve the effectiveness of antican-
cer treatments [36–38].

Dinami et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:111 Page 2 of 13



Here we found that in CRC patients there is a positive
correlation between TRF2 and VEGF-A and high levels
of TRF2 confer prognostic value to VEGF-A, identifying
a subclass of patients with higher risk of disease relapse/
progression.

Methods
Case selection
The study group comprised a retrospective series of 185
unselected patients surgically treated for colorectal
adenocarcinoma at the Regina Elena National Cancer
Institute, Rome, Italy, between January 2000 and
December 2013. Clinical data were obtained from hos-
pital medical records and included details pertaining to
patient gender and age, tumor differentiation, location,
size, TNM stage, lymph node (LN) metastasis, histo-
pathological grade, and treatments. Tumors were staged
according to Singh C. Staging of colonic carcinoma
(AJCC 7th Edition) PathologyOutlines.com website
(http://www.pathologyoutlines.com/topic/colontumor-
staging.html - Accessed May 14th, 2020).

Tissue microarray construction
For the purposes of this retrospective cross-sectional
study, all colorectal cancers included in the study were
histopathologically re-evaluated on haematoxylin and
eosin stained slides and representative areas were
marked prior to tissue microarray (TMA) construction.
Two core cylinders (1 mm diameter) were taken from

the CRC samples and deposited into two separate recipi-
ent paraffin blocks using a specific arraying device
(Alphelys, Euroclone, Milan, Italy).
In cases where informative results on TMA were ab-

sent due to missing tissue, no tumor tissue, or unsuc-
cessful staining, we re-analyzed the correspondent
routine tissue section. In addition to tumor tissues, the
recipient block also received normal colon tissue as
negative controls.
Two-μm sections of the resulting microarray block

were made and used for immunohistochemical (IHC)
analysis after transferring them to SuperFrost Plus slides
(Menzel-Gläser, Braunschweig, Germany).

Immunohistochemistry
Immunohistochemical (IHC) staining on TMA was per-
formed using anti-TRF2 mouse monoclonal antibody
(clone 4A794; Upstate, Sial, Rome, Italy) and anti-VEGF-
A rabbit polyclonal antibody (Abcam Ltd., Cam- bridge,
UK) in an automated immunostainer (Bond-III, Leica
Biosystem, Milan, Italy). A pH 6 buffer was used as anti-
gen retrieval for the two antibodies according to the
manufacturer’s protocol. 3,3′-diaminobenizidine tetrahy-
drochloride (DAB) visualized TRF2 mouse antibody via
a brown precipitate and Fast Red detected VEGF-A

rabbit antibody via a red precipitate. Images were ob-
tained at 20x magnification by using a light microscope
equipped with a software able to capture images
(DM2000 LED, Leica). The levels of TRF2, a telomere
subunit localized in the nucleus, and VEGF-A, a cyto-
plasmic factor playing a key role in promoting angiogen-
esis, were evaluated in terms of intensity of nuclear
(TRF2) and cytoplasmic (VEGF-A) staining, respectively
(0 = negative, 1+ = weak, 2+ =moderate, 3+ = strong).
Evaluation of the IHC results was performed independ-
ently and in blinded manner by two investigators. TRF2
and VEGF-A expression were scored semiquantitatively
based on IHC staining intensity: low intensity cases dis-
played a 0/1+ IHC score and high intensity cases pre-
sented a 2+/3+ IHC score.

Targeted DNA NGS
Genomic DNA was extracted on the QIAcube® platform
using the QIAamp DNA FFPE tissue kit (Qiagen) ac-
cording to the manufacturer’s instructions.
All DNA samples were then quantified by a Qubit

Fluorometer (Termofisher Scientific, Waltham, Massa-
chusetts, USA) using a Qubit® dsDNA HS Assay Kit. Li-
brary preparation was performed on 10 ng DNA (range
from 1 to 20 ng) by the Ion AmpliSeq Library Kit 2.0
(Termofisher Scientific) and The Ion AmpliSeq™Cancer
Hotspot Panel v2 (Termofisher Scientific) which gener-
ates 207 amplicons covering approximately 2800 COS-
MIC mutations in 50 different oncogenes and tumor
suppressor genes: ABL1, AKT1, ALK, APC, ATM, BRAF,
CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2,
ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3,
GNA11, GNAS, GNAQ, HNF1A, HRAS, IDH1, JAK2,
JAK3, IDH2, KDR, KIT, KRAS, MET, MLH1, MPL,
NOTCH1, NMP1, NRAS, PDGFRA, PIK3CA, PTEN,
PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC,
STK11, TP53, and VHL.
Each library was barcoded with the Ion Xpress Bar-

code Adapters 1–16 Kit (Termofisher Scientific) and di-
luted to a final concentration of 100 pM; barcoded
libraries were pooled in equimolar amount and diluted
to 35 pM for downstream template preparation. Tem-
plate preparation was performed by the Ion Chef system
(Termofisher Scientific), which integrates library amplifi-
cation, Ion Sphere particles (ISP) recovery-enrichment
and Chip loading. Sequencing was performed on Ion S5
system (Termofisher Scientific), with the Ion 530 chips.
Raw data were analyzed using the Torrent Suite Soft-
ware v.5.4. (Termofisher Scientific). The coverage ana-
lysis was performed using the coverage analysis plug-in
v.5.4. Quality criteria used as end points were a detec-
tion threshold of 5% and a minimum coverage depth of
200x. Polymorphic variants were filtered out exploiting
the Ion Reporter Suite (Termofisher Scientific). Only
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single nucleotide variants (SNVs) resulting in a nonsy-
nonymous amino acid change, or a premature stop
codon, and all short indels resulting in either a frame-
shift or insertion/deletion of amino acids were selected.
All variants were manually reviewed with Integrative
Genomics Viewer (IGV v.2.8.0, Broad Institute, Cam-
bridge, Massachusetts, USA) and with the support of
publically available datasets reporting on their estab-
lished or predicted oncogenicity (i.e. COSMIC, cBioPor-
tal, Clinical Trials, ClinVar). All molecular analyses were
carried out in tissue samples collected before the admin-
istration of first-line chemotherapy for advanced disease.

TCGA data analysis
Genomic/transriptomic data regarding patients in the
TCGA cohort were extracted from cBioPortal (Colorec-
tal Adenocarcinoma, TCGA - PanCancer Atlas; last
accessed on 11th Feb 2020). Patients with missing data
regarding disease stage, VEGF-A/TRF2 mRNA expres-
sion and time-to-event endpoints were excluded from
the analysis. Samples with VEGF-A and TRF2 mRNA
values greater than the median were classified either as
VEGF-A high (VEGF-AH), TRF2 high (TRF2H). On the
contrary, mRNA values lower than the median were
classified as VEGF-A low (VEGF-AL) or TRF2 low
(TRF2L). All combinations of TRF2/VEGF-A levels were
evaluated. Survival analysis were performed with the
Kaplan-Meier product-limit method from the date of
surgery until the time of death for any cause (Disease
specific survival – DSS, Disease-free Survival – DFS),
The log-rank test was used to assess differences between
subgroups. Significance was defined at the p ≤ 0.05 level.

Statistical analysis
The associations between variables were tested by Pear-
son Chi Square test or Fisher Exact test, when appropri-
ate. The Hazard Ratio and confidence limits (CI) were
estimated for each variable using the Cox univariate
model. Significance was defined at the p ≤ 0.05 level. A
multivariate Cox hazard model was developed using
stepwise regression (forward selection) by selecting
significant variables upon univariate analysis. Enter limit
and remove limit were p = 0.10 and p = 0.15, respect-
ively. Potential markers of prognostic significance
included: sex, age, stage, site, grading, tumor size,
lymph-node, metastasis, VEGF-A, TRF2. Survival curves
were calculated by the Kaplan–Meier method from the
date of surgery until relapse or death for any cause
(Disease Free Survival – DFS) or from the date of the
surgery until progression or death for any cause (Pro-
gression Free Survival – PFS). Since our cohort included
both stage I-III patients and metastatic (stage IV) pa-
tients, the outcome Progression/Disease Free Survival
(P/DFS) was used. The log-rank test was used to assess

differences between subgroups. Significance was defined
at the p ≤ 0.05 level. SPSS software (SPSS version 21.0, S
PSS Inc., Chicago, Illinois, USA) was used for statistical
evaluations.

Results
Patient sample classification
In this study, we analysed paraffin-embedded tumor
samples of 185 CRC patients treated at the Regina Elena
National Cancer Institute of Rome. The study was
reviewed and approved by the ethics committee of the
Institute. Detailed clinical and pathological features of all
cases are displayed in Table 1.
Of note, data relative to treatments were available for

145 out 185 patients in our dataset. Of these, 82 received
adjuvant therapy (Supplementary Table S1) whilst the
remaining 63 did not receive treatment (mainly stage I
and low risk stage II patients but also certain patients
that for undefined reasons were not treated).
Additionally, in order to establish the presence of gen-

etic alterations, samples were characterized by Next
Generation Sequencing (NGS) using a commercial tar-
geted NGS panel of 50 genes known or highly suspected
to promote various tumor types, included CRC (Fig. 1a
and Supplementary Table S2). Of the 185 analysed cases,
18 were not evaluable for technical reasons, 1 was wild-
type for all the investigated genes, 18 were mutated in a
single gene, and the remaining 148 cases carried mul-
tiple gene mutations (from 2 to 7) (Fig. 1b), indicating
that different mutated genes can coexist in a single sam-
ple. Moreover, a detailed data analysis evidenced that
the most common mutations concerned APC, TP53,
KRAS, PI3KCa and KDR (Fig. 1a). Among these 5 genes,
APC, TP53, KRAS and PI3KCa are relevant in the
tumorigenesis of CRC, whilst KDR encodes for VEGFR2,
the main receptor VEGF-A, and its mutational state
could be relevant in defining the prognostic role of
VEGF-A in CRC patients. Notably, 156 out of 166 pa-
tients were mutated in the evaluated genes and, more
precisely, 40 presented a single mutated gene while 116
showed multiple alterations (55 double, 44 triple, 16
quadruple and 1 quintuple mutations), as detailed in the
(Fig. 1c) Finally, for each of the selected oncogenes, the
patients were categorized, depending on the presence or
absence of that specific mutation, into wild-type or mu-
tated (Fig. 1d), evidencing that 49.7% were mutated for
APC, 43.1% for TP53, 47.3% for KRAS, 33.5% for
PI3KCa and 36.5% for KDR.

Immunohistochemical evaluation of TRF2 and VEGF-A
expression levels
TMA sections of 185 CRC samples were labelled with
antibodies against TRF2 and VEGF-A and scored, de-
pending on the intensity of the staining (Fig. 2a, b).
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Colorectal adenocarcinomas were considered positive
for TRF2 when neoplastic cells showed nuclear immu-
noreactivity. IHC staining was classified as negative,
score 0; low, score 1+; medium, score 2+; and high,
score 3+. Concerning VEGF-A, tumors exhibiting a de-
tectable, but faint cytoplasmic immunostaining were
scored as 1+, tumors displaying a complete cytoplasmic
immunostaining with a moderate intensity were scored
as 2+, whereas colorectal cancers showing a distinct and
intense cytoplasmic immunostaining were scored as
strongly positive 3+. For all the subsequent analyses,

score 0/1+ was defined as low intensity expression (L)
and score 2+/3+ as high intensity expression (H). In
cases where informative IHC results on TMA were ab-
sent due to missing tissue or no tumor tissue,
correspondent routine tissue sections were re-analyzed.
Notably, of the entire series of 185 samples, 121 (65%)

CRC demonstrated a high TRF2 expression (TRF2H,
score 2+/3+), while high expression of VEGF-A (VEGF-
AH, score 2+/3+) was observed in 71 (39%) patients (Fig.
2c and Supplementary Table S3). Moreover, as reported
in the (Fig. 2d), among the 64 tumors with low TRF2
levels (TRF2L, score 0/1+), 52 (81%) were VEGF-AL

(score 0/1+) while the remaining 12 cases (19%) were
VEGF-AH. Conversely, of 121 TRF2H CRCs, 62 (51%)
were VEGF-AL and 59 (49%) VEGF-AH. χ2 test evi-
denced a significant association between the two param-
eters (p < 0.0001; Fig. 2d).

Clinical relevance of TRF2 and VEGF-A association
In order to establish the prognostic value of TRF2 and
VEGF-A, the 185 patients, with a median follow-up of
66 months (95% CI 61.8–71.5), were retrospectively eval-
uated for progression/disease-free survival (P/DFS).
Interestingly, when the patients were analyzed by
Kaplan-Meier curves, we observed that, whilst differ-
ences in TRF2 levels did not affect the outcome of inter-
est (p = 0.60), high expression levels of VEGF-A (VEGF-
AH) identified a subgroup of patients at higher risk of re-
lapse/progression (p = 0.04) (Supplementary Fig. S1a, b).
Concerning the effects of VEGF-A/TRF2, we noticed
that patients expressing high levels of both VEGF-A and
TRF2 (VEGF-AH/TRF2H) were characterised by shorter
P/DFS (Fig. 3a). Of note, four-arms analysis revealed a
borderline significant association (p = 0.057), which be-
came fully significant when VEGF-AH/TRF2H patients
were compared with all the other biomarker combina-
tions (Fig. 3b; p = 0.003). Interestingly these data were
confirmed also in a larger cohort of 621 CRC patients
from the The Cancer Genome Atlas dataset (TCGA;
https://doi.org/10.7908/C11G0KM9), whose clinical out-
come was evaluated in terms of both Progression Free
Survival (PFS) and Disease Specific Survival (DSS) (Fig.
3c, d). Moreover, clinical relevance of VEGF-A (Supple-
mentary Fig. S1b) is exacerbated by high levels of TRF2
expression, as demonstrated by the reduced probability
of survival of the VEGF-AH/TRF2H patients compared
with the VEGF-AL/TRF2H ones (Figs. 3a and 4a). Not-
ably, these results assumed still more interest when stage
IV were excluded from the analysis (Supplementary
Table S4, S5, S6). Indeed, while TRF2 and VEGF-A
alone had no effect on DFS (Supplementary Fig. S1c, d),
their combination maintained prognostic significance
(p = 0.03) in tumors in which high VEGF-A was associ-
ated with high TRF2 expression levels (Fig. 4b). Next, we

Table 1 Clinicopathological characteristics of evaluated CRC
patients

Number of patients 185

Tumor sizea

1 2 (1.1%)

2 20 (10.8%)

3 119 (64.3%)

4 44 (23.8%)

Lymph-node

Negative (N-) 83 (44.9%)

Positive (N+) 102 (55.1%)

Distant metastasis

Negative (M0) 145 (78.4%)

Positive (M+) 40 (21.6%)

Grading

1 2 (1.1%)

2 148 (80.0%)

3 35 (18.9%)

Stage

I-II 74 (40%)

III 68 (36.8%)

IV 43 (23.2%)

Age

Average 65 yrs

Minimum 35 yrs

Maximum 90 yrs

Sex

Male 117 (63.2%)

Female 68 (36.8%)

Site

Rectum 49 (26.5%)

Right colon 59 (31.9%)

Left colon 77 (34.0%)
aTumor size: T1 – tumor invades submucosa; T2 – tumor invades muscularis
propria; T3 – tumor invades through the muscularis propria into the
pericolorectal tissues; T4 – T4a: tumor penetrates to the surface of the visceral
peritoneum, T4b: tumor directly invades or is adherent to other organs
or structures
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estimated P/DFS in the subset of patients (N = 145) for
whom data related to administered treatments and out-
comes were available. Interestingly, Kaplan-Meier curves
(Fig. 4c, d and Supplementary Fig. S2) showed that ad-
ministration of adjuvant therapy – mainly FOLFOX and
5-FU (Supplementary Table S1), two treatments that are
not reported to affect telomere biology or angiogenic re-
sponse – produced a beneficial effect on VEGF-AL/
TRF2H patients but not on the VEGF-AH/TRF2H ones,
suggesting that this latter group of patients might benefit
of combinatorial treatment with common adjuvant ther-
apies and anti-VEGF-A drugs.
Finally, in the univariate analysis (Cox model), tumor

site (HR 1.86, CI 1.18–2.95, p = 0.08), pN (HR 1.63, CI
1.04–2.57, p = 0.03), pM (HR 2.89, CI 1.79–4.68, p <
0.0001), VEGF-A (HR 1.58, CI 1.01–2.48, p = 0.046), and
the combination VEGF-AH/TRF2H (HR 1.66, CI 1.04–

2.64, p = 0.032) were associated with an increased risk of
disease recurrence (Table 2).
Moreover, tumor site, metastatic disease and VEGF-A

were confirmed as prognostic factors in multivariate
analysis (Cox model) (Table 3). In particular, VEGF-A
was found to be an independent predictor of adverse
outcomes also in that subclass of patients expressing
high levels of TRF2 expression (HR 1.93, CI 1.05–3.55,
p = 0.03) (Table 3).
Altogether, these data support the idea that even if

TRF2 has not prognostic relevance per se, an increase of
its levels exacerbate the already negative clinical out-
come associated with high levels of VEGF-A expression.
Since CRC pathogenesis, drug responsiveness and clin-

ical outcome have been reported to also depend on the
anatomical location of the tumor and can differ between
right side and left side of the colon [39], we evaluated

Fig. 1 Mutational profile of CRC patients evaluated by NGS analysis. a Pie chart showing frequency of the mutations detected in tumor samples
from the CRC patients evaluated in the study. b Pie chart showing distribution of patients according to the number of mutations (from 0 to 7)
simultaneously detected for each sample. For each condition, the number of patients is reported in the brackets. c Scheme showing the
distribution of patients carrying mutated forms of TP53 (red), PIK3Ca (green), KRAS (blue), APC (orange) or KDR (purple), singularly or in
combination (from 2 to 5 simultaneous mutations). Number of patients is reported for each mutational profile. d Histograms showing the
number of patients mutated (red bars) or wild-type (blue bars) for each evaluated gene (TP53, PIK3Ca, KRAS, APC or KDR)
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the prognostic relevance of TRF2 and VEGF-A by distin-
guishing colon cancer between right- and left-sided.
Probably due to the limited number of available patients
(Table 1), we were unable to observe any significant dif-
ference in the survival rate between patients with right-
sided and left-sided colon cancer (HR 1.28; 0.73–2.25;
p = 0.39). Moreover, we did not observe any significant
interaction (p = 0.91) between the tumor site and the ex-
pression levels of TRF2 and/or VEGF-A.
Next, on the basis of the NGS analysis (Fig. 1), it was

also evaluated whether survival associated with the levels
of VEGF-A and TRF2 was or not dependent on the mu-
tational state of APC, TP53, KRAS, PI3KCa and KDR.

Interestingly, by stratifying the patients on the basis of
TRF2 (TRF2L vs TRF2H) or VEGF-A (VEGF-AL vs
VEGF-AH), we did not find statistically significant corre-
lations between the levels of these two variables and the
mutations of TP53, PI3KCa, KRAS, APC and KDR
(Supplementary Fig. S3). Despite these results and the
very limited sample sizes available, the analyses revealed
that the mutational state of the evaluated genes did not
affect the prognostic value of TRF2 and VEGF-A, evalu-
ated both singularly (supplementary Fig. S4, S5, S6, S7,
S8) or in combination (Supplementary Fig. S9-S10). In
particular, high levels of VEGF-A and TRF2 expression
(VEGF-AH/TRF2H) always correlates with a poor

Fig. 2 Association between TRF2 and VEGF-A expression in CRC patients. a and b Immunohistochemical (IHC) score of CRC samples labelled with
the indicated antibodies. a Representative TMA sections stained for TRF2. Depending on the intensity of nuclear immunoreactivity, tumor
samples were classified as negative (score 0), low (score 1+), medium (score 2+), or high (score 3+). b Representative images of CRC samples
stained for VEGF-A. Samples’ classification was based on the intensity of the cytoplasmic immunostaining: negative (score 0), faint (score 1+),
moderate (score 2+) or intense (score 3+). c Histogram showing the percentage of patients divided on the basis TRF2 and VEGF-A
immuhistochemical scores, respectively. Score 0 (blue), 1+ (orange), 2+ (grey) and 3+ (yellow). d Upper panel - pie charts showing the
distribution of VEGF-A low (VEGF-AL, score 0/1+) and VEGF-A high, (VEGF-AH, score 2+/3+) in the sub-populations of TRF2 low (TRF2L, score 0/1+)
and TRF2 high (TRF2H, score 2+/3+) patients (***P < 0.001; χ2 test). Lower panel – IHC evaluation of TRF2 and VEGF-A expression in two
representative CRC samples showing (1) low levels of VEGF-A and TRF2 (VEGF-AL/TRF2L) and (2) high levels of VEGF-A and TRF2 (VEGF-AH/TRF2H).
Scale bar: 100 μm
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prognosis (Supplementary Fig. S9–10), confirming and
reinforcing the predictive relevance of combinatorial
analyses based on the evaluation of VEGF-A and TRF2
expression levels in CRC patients, independently from
the mutational state of the evaluated driver oncogenes
and/or the VEGF-A receptor. The results obtained in
our patients were then confirmed also in the patients
from the TCGA dataset (Supplementary Fig. S11–12).
For completeness, the analyses were also extended to
BRAF. Indeed, even if the mutational rate of this gene is
quite low in CRC patients (about 7–10%), BRAF plays a
critical role in the prognosis and for this reason its role
would be relevant in our study [40, 41]. Due to the lim-
ited number of patients carrying the mutated form of
BRAF in our dataset (only 11/185 patients, as reported,
see Supplementary Table S2), the analyses were directly
performed in patients from the TCGA. Notably, the re-
sults demonstrated that the prognostic value of TRF2/

VEGF-A association is not affected by the mutational
state of BRAF (Supplementary Fig. S13), definitively con-
firming the role of TRF2/VEGF-A as independent prog-
nostic factors in CRC patients.

Discussion
CRC is one of the leading causes of mortality and mor-
bidity in developed countries. To date, prediction of
clinical outcome of CRC patients is only based on the
evaluation of tumor stage, lymph-node positivity and
presence of distant metastases. However, some patients,
classified as low-risk subjects, develop local recurrence
or metastasis years after receiving surgical treatment
[42], evidencing the urgent needed of identifying novel
and more effective prognostic markers. In the last few
times there has been a rapid growth in the number of
clinical studies aimed at identifying biomarkers able to
discriminate the patients that might take a real

Fig. 3 Clinical outcome of CRC patients stratified on the basis of VEGF-A and TRF2 levels. a and b Progression/ Disease Free Survival evaluated by
Kaplan–Meier curves on the panel of 185 CRC patients retrospectively evaluated in our institute. a Patients were stratified on the basis of VEGF-A
and TRF2 expression and survival was evaluated in patients’ subgroups with all the possible combinations of VEGF-A/TRF2 levels: VEGF-A high/
TRF2 high (VEGF-AH/TRF2H), VEGF-A high/ TRF2 low (VEGF-AH/TRF2L), VEGF-A low/ TRF2 high (VEGF-AL/TRF2H), VEGF-A low/ TRF2 low (VEGF-AL/
TRF2L). b Patients were stratified as in (a) and survival was evaluated by comparing patients expressing high levels of VEGF-A and TRF2 (VEGF-AH/
TRF2H) with all the others patients’ subgroups (others). For each sub-population, the number of patients is reported in the brackets. Percentages
of surviving patients are reported close to the respective curves. c Progression-free survival (PFS) and d Disease Specific Survival evaluated by
Kaplan–Meier curves on CRC patients from the TCGA dataset. Survival of patients, stratified on the basis of TRF2 and VEGF-A mRNA expression,
was evaluated as in (b)
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advantage from administration of therapies beyond the
surgical treatment. In this scenario, telomeres were
evaluated as a putative prognostic factor in CRC, even
if lack of solid evidences and a limited amount of
available data raise many doubts about their effective
clinical relevance [15, 16, 21]. Conversely, the telo-
meric proteins have been poorly investigated in clin-
ical studies and very little is still known about their
role as tumor biomarkers [43, 44].
Here, based on previous studies showing that TRF2 is

over-expressed in CRC [29, 32, 33] and it is a marker of
poor prognosis in several tumor histotypes [45, 46], we
assayed the predictive role of TRF2 on the outcome of
CRC patients. Notably, Kaplan-Meier and Cox regres-
sion analyses, performed on a cohort of 185 CRC pa-
tients from our institute, evidenced that TRF2 is not an
independent predictor of recurrence and prognosis for
patients affected by this tumor. Despite the knowledges

Fig. 4 Impact of the direct correlation between TRF2 and VEGF-A on patients’ survival. Survival analysis of CRC patients stratified on the basis of
the levels of VEGF-A and TRF2. a Progression/ Disease Free Survival of patients expressing high levels of VEGF-A and TRF2 (VEGF-AH/TRF2H) was
compared with that of patients in which high levels of TRF2 correlate with low VEGF-A expression (VEGF-AL/TRF2H). b Disease Free Survival of
stage I-III CRC patients. c and d Progression/ Disease Free Survival of the VEGF-AH/TRF2H and VEGF-AL/TRF2H patients who (c) did not receive
(Untreated patients) or (d) did receive (Treated patients) adjuvant therapy. For each sub-population the number of patients is reported in the
brackets. Percentages of surviving patients are reported close to the respective curves

Table 2 Univariate analysis

Number of patients 185

Variables HR (95% CI; p value)

Age (> 67 vs ≤ 67) 1.01 (0.65–1.57; p = 0.97)

Sex (male vs female) 1.35 (0.84–2.17; p = 0.22)

Site (rectum vs colon) 1.86 (1.18–2.95; p = 0.08)

Size (3/4 vs 1/2) 1.50 (0.72–3.12; p = 0.28)

Node (N+ vs N-) 1.63 (1.04–2.57 p = 0.03)

Metastasis (M+ vs M-) 2.89 (1.79–4.68; p < 0.0001)

Grading (3 vs 1/2) 1.25 (0.72–2.17; p = 0.42)

VEGF-A (L vs H) 1.58 (1.01–2.48; p = 0.046)

TRF2 (L vs H) 1.13 (0.72–1.77; p = 0.60)

VEGF-A/TRF2 (H/H vs others) 1.66 (1.04–2.64; p = 0.032)
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regarding TRF2 have been long limited to the sphere of
telomere biology, it is now universally accepted that TRF2
also exerts telomere-unrelated functions also correlated
with tumor formation and progression [24, 45, 47, 48]. In
particular, data from our and other laboratories evidenced
a role of TRF2 in controlling tumor angiogenesis [33, 34,
49]. Since its discovery, angiogenesis – the process of
vessel formation from stromal cells – has been identified
as a critical event for promoting tumor growth and metas-
tasis [50–52]. Among the several factors participating in
angiogenesis, VEGF-A has been extensively explored as
prognostic marker, but its relevance in predicting the
outcome of CRC patients is quite controversial. Indeed,
while some studies show an association between over-
expression of VEGF-A and poor CRC outcomes [53–55],
others demonstrate that either VEGF-A has no significant
prognostic value in CRC patients [42, 56–58] or it
assumes prognostic relevance only in association with
other factors [59, 60]. In accordance with these data, our
results demonstrated that even if VEGF-A is a poor
prognostic factor in CRC patients, its clinical relevance is
lost when stage IV patients, a subclass of patients with a
poor clinical outcome, are excluded from the survival
analyses. Starting from these data, we evaluated the exist-
ence of a clinically-relevant association between TRF2 and
VEGF-A. Interestingly, immunohistochemical evaluation
of tumor samples evidenced the existence of a positive
correlation between TRF2 and VEGF-A. Moreover, ana-
lysis of patients’ survival demonstrated that high levels of
TRF2 and VEGF-A expression identify the stage I-III
patients with a higher risk of relapse/progression. These
results, corroborated by additional studies performed on a
larger panel of CRC patients from the TCGA dataset,
suggest that high levels of TRF2 expression impacts on
VEGF-A exacerbating its prognostic relevance. Moreover,
uni- and multi-variate analyses demonstrated that the
association between high levels of TRF2 and VEGF-A
represents, together with the tumor site and metastasis, a
statistically relevant prognostic parameter in the
evaluation of CRC patients. Of note, patients’ samples
available for this study were also subjected to molecular
profiling by NGS. The analyses, performed on a commer-
cial targeted NGS panel of 50 genes, evidenced that APC,
TP53, KRAS, PI3KCa and KDR were most frequently mu-
tated in our patients but, regardless the relevance of these
alterations in CRC, the mutational state of these genes did

not affect the prognostic value of TRF2/VEGF-A,
strengthening their clinical relevance.
Finally, analysing the effects of adjuvant therapies

on the clinical outcomes, we noticed that patients ex-
pressing high levels of TRF2, have a benefit of
chemotherapy only in the presence of low levels of
VEGF-A, a situation that could be pharmacologically
recapitulated through the administration of VEGF-A
inhibitors to the patients expressing high levels of
both TRF2 and VEGF-A. These data, although requir-
ing further investigations, suggest that TRF2 – besides
improving the prognostic value of VEGF-A – might
be used, together with the VEGF-A, to identify a sub-
group of patients that, independently from the muta-
tional state of KDR (the gene encoding for VEGFR2),
could take advantage from anti-angiogenic target-
therapy. In this regard, experimental data produced
on xenograft mice evidenced that treatment with the
VEGF-A inhibitor bevacizumab determines a reduc-
tion of about the 50% in the growth of TRF2 over-
expressing tumors (data not shown). Our study was
carried out on 185 patients available in our institute
and confirmed in a larger cohort of CRC patients
from TCGA dataset. However, enlargement of our
study through the enrolment and the subsequent pro-
spective evaluation of new patients would be
desirable.

Conclusions
In conclusion, the results of this study permitted to
identify TRF2 and VEGF-A association as a novel bio-
marker with prognostic relevance in CRC. In particular,
co-expression of TRF2 and VEGF-A correlates with a
poor clinical outcome in CRC patients identifying a sub-
set of patients (mainly stage II and III) at higher risk of
disease relapse/progression that could take an effective
advantage from specific therapeutic regimens, included
pharmacological approaches based on administration of
angiogenic inhibitors.
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1186/s13046-020-01612-z.

Additional file 1: Supplementary Table S1. Type of adjuvant therapy
administered to patients
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