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Abstract

Background: Recent studies have shown that the classic hypoglycemic drug metformin inhibits tumor
growth; however, the underlying mechanism remains unclear. We previously showed that metformin
disrupts the sponge effect of long non-coding RNA MALAT1/miR-142-3p to inhibit cervical cancer cell
proliferation. In this study, we interrogated the ability of metformin to modulate the anti-tumor immune
response in cervical cancer.

Methods: The cell counting kit-8 assay was used to detect the viability of cervical cancer cells. Flow
cytometry assays were performed to measure cell apoptosis and cell cycle. Lactate dehydrogenase (LDH)
cytotoxicity assay was used to detect NK Cell Cytotoxicity. Relative protein levels were determined by
immunoblotting and relative gene levels were determined by quantitative real-time PCR. Tumor Xenograft
Modeling was used to evaluate the effect of metformin in vivo.

Results: Metformin inhibited cervical cancer cell proliferation, cervical cancer xenograft growth, expression
of PCNA, p-PI3K and p-Akt. Moreover metformin induced cervical cancer cell apoptosis and caused cancer
cell cycle arrest. In addition, metformin upregulated the expression of DDR-1 and p53 in human cervical
cancer cells. Furthermore, metformin also regulated the mRNA and protein expression of MICA and HSP70
on the surface of human cervical cancer cells via the PI3K/Akt pathway, enhancing NK cell cytotoxicity.

Conclusions: In conclusion, our results suggest that metformin may be used as immunopotentiator to
inhibit cervical cancer progression and may be considered a viable candidate for combination therapy with
immunotherapy.
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Background

According to the tumor data reported in 2019, nearly
529,000 newly diagnosed cases of cervical cancer are re-
ported annually and the mortality of cervical cancer
ranks the second in 20- to 39-year-old female cancer pa-
tients, with approximately nine cancer patients die of
cervical cancer each week [1]. Cervical cancer is gener-
ally treated by surgery, chemotherapy, or radiotherapy
alone or in combination [2]. However, the survival rate
of cervical cancer patients remains relatively low. Al-
though the 2-, 4-, and 9-valent human papillomavirus
(HPV) vaccines have been shown to prevent cervical
cancer, these do not have protective effects on all indi-
viduals [3, 4]. Hence, the development of novel treat-
ments to inhibit tumor invasion and migration and
improve the survival rate and quality of life of cervical
cancer patients is particularly important.

Metformin is currently the first-line oral drug for the
treatment of type 2 diabetes; it is inexpensive and im-
parts a significant therapeutic effect. Studies have shown
that diabetic patients with metformin treatment have a
lower incidence of cancer. The antitumor effect of met-
formin is closely related to mechanistic target of rapa-
mycin complex 1 (mTORCI1), a key protein of the PI3K/
Akt/mTOR pathway [5-8]. Studies have shown that
phosphatidylinositol 3-kinase (PI3K), epidermal growth
factor receptor, extracellular signal-regulated kinases,
anti-apoptotic B-cell lymphoma 2 (Bcl-2) pathways and
proteins play an important role in the development of
tumors, particularly solid tumors such as cervical cancer
[9, 10]. These signaling pathways and proteins form the
regulatory network of cervical cancer and are ideal tar-
gets for the development of antitumor drugs. The PI3K/
serine-threonine kinase/rapamycin pathway has recently
been shown to be closely related to the growth and pro-
liferation of solid tumor cells, and serine/threonine ki-
nases play a central role in the pathway. PI3K inhibitors
inhibit the expression of downstream serine/threonine
kinases. In addition, serine/threonine kinase inhibitors
suppress tumor cell proliferation [11, 12].

Natural killer (NK) cells are important immune cells
in the body that are involved in antitumor, antiviral in-
fection, and immunomodulation processes. Under spe-
cific conditions, NK cells can identify target cells and
activate immune cells. NK cells impart broad spectrum
antitumor effects and do not show specificity or major
histocompatibility complex (MHC) restriction. NK cells
have two anticancer effects. First, NK cells can directly
kill tumor cells by releasing perforin and granzymes or
by death receptor engagement. Second, NK cells can se-
crete cytokines and chemokines to activate T cells and
exert a killing effect [13]. Studies have shown that val-
proic acid (VPA) upregulates the expression of human
histocompatibility complex class I-related chain A
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(MICA) and histocompatibility complex class I-related
chain B (MICB) by activating PI3K/Akt signaling [14,
15]. The NK group 2D (NKG2D) receptor is an activated
receptor for MICA on NK cells that recognizes MHC
class I molecules and plays an important role in innate
immunity. When MICA on the surface of tumor cells is
activated, NK cells can recognize the MICA and initiate
the antitumor immune response [16, 17]. In vitro studies
have shown that peripheral blood NK cells (PBNK) are
able to kill HPV-infected cell lines [18]. However, NK
cells are often dysfunctional and low in number in cer-
vical cancer patients and thereby unable to mount effi-
cient cytotoxicity against tumors [19].

Our previous study has shown that metformin disrupts
the sponge effect of long non-coding RNA MALAT1/
miR-142-3p to activate the expression of the down-
stream antitumor protein high-mobility group A protein
2 (HMGAZ2) and exert an anti-cervical cancer effect [20].
We also found that a combination treatment with met-
formin and nelfinavir for 12 h significantly upregulated
MICA protein expression in SiHa and HeLa cells [21].
However, the molecular mechanism by which metformin
upregulates MICA remains unclear. This study aimed to
elucidate the molecular mechanisms by which metfor-
min activates antitumor immunity.

Materials and methods

Cells, reagents, and antibodies

In this study, the human cervical cancer cell lines, SiHa
cells and HeLa cells, and the NK-92 cells were from a
research laboratory of Foshan Maternity and Child
Health Care Hospital, Guangdong Province, China. The
SiHa and HeLa cells were cultured in Dulbecco’s modi-
fied eagle medium (DMEM) containing 10% fetal bovine
serum (Invitrogen, Carlsbad, CA, USA) and 1% strepto-
mycin (Sigma-Aldrich, St. Louis, MO, USA). The NK-92
cells were cultured in alpha-minimum essential medium
(a-MEM) containing 100 U/mL interleukin (IL)-2. Di-
methyl sulfoxide (DMSO), LY294002, and metformin
hydrochloride were purchased from Sigma-Aldrich.
Anti-MICA, anti-MICB, anti-ULBP-2/5/6 Phycoerythrin,
anti-ULBP-1 Alexa Fluor 488, anti-ULBP-3 Allophyco-
cyanin, anti-DDR-1, anti-HSF-1, anti-PI3K (110a), anti-
phospho-PI3Kp55 (Tyr199), anti-Akt, anti-phospho-Akt
(ser473), anti- proliferating cell nuclear antigen (PCNA),
anti-p53 primary antibodies, and their corresponding
secondary antibodies were purchased from Cell Signal-
ing Technology (Beverly, MA, USA).

Analysis of cell proliferation

According to the methods described in a previous study
[22], cells were trypsinized and seeded in 96-well plates
(1x10* cells per well). After the cells were attached,
metformin was added at various concentrations (0—
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400 uM) for 48 h. To analyze cell viability, the cell prolif-
eration assay, cell counting kit-8 (CCK-8), was used to
measure the absorbance of the samples using a micro-
plate reader and at a wavelength of 450 nm.

Cell apoptosis assays

According to the methods described in a previous study
[8], Cervical cancer cell lines (HeLa and SiHa) were
seeded at a density of 2 x 10° cells/well in a 6-well cul-
ture plate. The cells were washed twice with cold PBS,
and then resuspended in 1x binding buffer. One hun-
dred pl of the cell suspension (1 x 10° cells) was trans-
ferred to a 5ml culture tube and mixed with 5pul of
FITC anti-Annexin V and 5 pl PI. The mixture was gen-
tly vortexed and incubated for 15 min at RT (25°C) in
the dark. Then, 400 ul of 1x binding buffer was added
into each tube. The samples were analyzed by flow cy-
tometry within 1h. The green fluorescence of Annexin
V-FITC was measured at 530 nm, and the red fluores-
cence of PI was measured at 585 nm. The results were
analyzed with FlowJo software.

Cell cycle assays

Cells were harvested in PBS and fixed by addition of ice-
cold 70% ethanol with a Pasteur pipette during vortex-
ing, as previously described [8]. Then, the cells were cen-
trifuged at approximately 2000rpm for 5min and
washed twice with PBS. Finally, the cell were stained by
PI staining solution (Invitrogen) and analyzed by flow
cytometry collecting 25,000 events per sample. The re-
sults were analyzed with FlowJo software.

Nuclear protein extraction

According to the methods described in a previous study
[23], cells were washed three times with pre-cooled
phosphate buffered saline (PBS) and subsequently
scraped off with a cell scraper and collected in a 1.5 mL
centrifuge tube. The cells were centrifuged at 1000 rcf,
4°C, for 3 min. A protease inhibitor, cell lysis buffer, and
cell membrane rupture solution were added into the pel-
let to lyse the cells on ice for 1h, followed by 1000 rcf
centrifugation at 4°C for 20 min. The supernatant was
discarded, and the pellet was then lysed with nuclear ex-
traction lysis buffer on ice for 1h, with vortexing every
5h for complete lysis, which was followed by 12,000 rcf
centrifugation at 4°C for 15min to collect the super-
natant (i.e., nuclear protein extract).

Lactate dehydrogenase (LDH) cytotoxicity assay

As described in the methods of a previous study [21,
23], the human cervical cancer HeLa or SiHa cells were
seeded as target cells in 96-well plates (2 x 10* cells per
well) in a total volume of 100 pL per well. The cells were
then divided into five different groups as follows: drug

(2020) 39:127

Page 3 of 12

treatment; effector cells (NK-92) with spontaneous LDH
efflux; target cells with spontaneous LDH efflux; target
cells with maximum LDH efflux; and volume correction
(no cells) groups. Approximately 10 puL of lysis buffer
(10x) was added to each well of cells and then incubated
in a 37°C incubator with 5% CO, atmosphere. After
250xg centrifugation for 3 min, 50 uL of a reaction solu-
tion were added to each well of the 96-well plates,
followed by 50 uL stopping solution, with gentle mixing,
and then the absorbance at wavelengths of 490 nm and
680 nm were read. The cytotoxicity of different target ra-
tios (%) was calculated using the following formula:
Cytotoxicity (%) = (Experimental group - Effector cells
with spontaneous LDH efflux group - Target cells with
maximum LDH efflux group)/(Target cells with max-
imum LDH efflux group - Target cells with spontaneous
LDH efflux group) x 100.

RNA extraction and quantitative real-time PCR

According to the methods described in a previous study
[20], After transfection for 48 h, total RNA was isolated
from SiHa and HeLa using TRIzol reagent (TAKARA,
Dalian, China) according to the manufacturer’s instruc-
tions. For mRNA quantification, RNA was reverse tran-
scribed into cDNA using the PrimeScript™ RTreagent

Kit (Takara, Japan) and then quantified on the CFX96
touch q-PCR system (BIO-RAD, USA) with SYBR Premix
Ex Taq Kit (Takara, Japan) according to the manufac-
turer’s protocols. In this study, GAPDH was used as an in-
ternal control for determining the levels of HSP70 and
MICA. The primers used for quantitative real-time poly-
merase chain reaction (qQRT-PCR) are listed in Table 1.
Reactions were performed using a SYBR Green kit
(TAKARA, Dalian, China), according to the manufac-
turer’s instructions. Each 20-ul reaction mixture included
2 pl of cDNA, 10 ul of SYBR Green Mix, 0.4 pl of forward
primer, 0.4 ul of reverse primer, 0.4 pl of RoxReference
Dye, and 6.8 pl of RNase-free water. Then, the PCR reac-
tions were performed in the CFX96 touch q-PCR system
(BIO-RAD, USA) under the following conditions: 95°C
for 30s, followed by 40 cycles at 95 °C for 5, 60 °C for 30
s, 95°C for 155, and 60°Cfor 60 s. Relative gene expression
was determined by using the AAC; method. Significance
was defined according to P values from the two-tailed t-
test. All of the reactions were performed in triplicate.

Western blotting

Western blotting was performed as previously described
[24]. Briefly, the cells were harvested and lysed with
RIPA lysis buffer, and the concentration of the collected
proteins was determined. Then, 100 pg of the extracted
protein was separated in 10, 8%, or 5% SDS-PAGE gel
based on the molecular weight of the target protein. The
separated protein gel with a pre-stained protein marker
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Table 1 Oligonucleotide primer sequences for gRT-PCR
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Gene Primers(5°-3”)
MICA F:5-AGG GCT TCT GGC TTC TAT CC-3°
R:5°-AGG GCT TCT GGC TTC TAT CC-3°
GAPDH F:5-CGC TGA GTA CGT CGT GGA GTC-3°
R:5’-GCT GAT GAT CTT GAG GCT GTT GTC-3’
HSPT0 F:5-TAC TGT GGA CCT GCC AAT CG -3’

R:5°-TAG CAT CAT TCC GCT CCT TC-3

was transferred onto a PVDF membrane. Subsequently,
the membrane was blocked in a 5% skim milk solution
at room temperature for 2 h, followed by incubating with
the corresponding primary and secondary antibodies
and washing with Tris-buffered saline, 0.1% Tween 20
(TBST) in between. The PVDF membrane was devel-
oped using an enhanced chemiluminescence solution
(Pierce) and subsequently photographed in a Bio-Rad gel
imaging system. The exposure time was adjusted accord-
ing to the protein bands and background. After selecting
the clear protein bands in the image, the gray value of
each protein band was analyzed by software and statis-
tical analysis was conducted.

Tumor Xenograft modeling and in vivo experiments

BALB/c nude mice of 4 weeks old (weighing approxi-
mately 15-17 g) were purchased from Guangdong Med-
ical Laboratory Animal Center (Guangdong Province,
China). All mice were housed and bred in a specific-
pathogen-free (SPF) grade animal facility, with 22-25°C
temperature, 40-60% humidity, and 12 h/12 h light/dark
cycle. To generate tumor xenograft, 20 mice were used.
The skin of the left forelimb near the armpit was disin-
fected and 0.1 mL SiHa cells suspended in serum-free
medium (containing approximately 5 x 10° cells) were
injected. After inoculation of the cervical cancer cells,
the nude mice were continuously housed under the
same conditions. Once the subcutaneous nodules grown
to a rice grain size (required approximately a week), the
subcutaneous xenograft model of cervical cancer in nude
mice was successfully constructed. The subcutaneous
tumor size in each nude mouse was measured using a
digital vernier caliper. Once the tumor diameter reached
approximately 0.3—0.5cm, the nude mice were num-
bered, randomly divided into four groups (with five mice
per group), namely, control, model, 50 mg/kg/d metfor-
min, and 250 mg/kg/d metformin groups. Metformin
was given by gavage. All nude mice were closely moni-
tored for tumor growth, skin condition, and behavior
daily and any tumor ulceration or irritation was noted.
The longest (A) and the shortest (B) diameters of the
subcutaneous tumors were measured with a digital

vernier caliper before each metformin administration to
calculate the tumor volume (V) using the following for-
mula: V=05 x A x B% In addition, all nude mice were
weighed daily, and their daily food intake was also mea-
sured. After the completion of the 23-day metformin ad-
ministration, all nude mice were sacrificed and placed
on ice, their skin was immediately cut open, and the
subcutaneous tumor xenografts were collected. After
weighing each tumor xenograft on a digital scale, one
part of the tumor tissue was dissected and frozen in li-
quid nitrogen for western blotting. All experimental pro-
cedures were approved by the Institutional Animal Care
and Use Committee of South Medical University.

Statistical analysis

The SPSS16.0 software (IBM SPSS, Chicago, IL, USA)
was used for data analysis in this study. An independent
T test was used to compare the results between the two
groups. Multivariate ANOVA was used to compare dif-
ferences between multiple groups, followed by multiple
corrections using the Bonferroni’s test. P < 0.05 was con-
sidered statistically significant.

Results

Metformin inhibits the proliferation of cervical Cancer
cells

Similar to other tumors types, cervical cancer cells have
infinite proliferative properties [25]. Inhibition of tumor
cell proliferation has been one of the strategies for devel-
oping chemotherapy drugs. Here, metformin was used
to treat cervical cancer cells for 72h, and CCK-8 was
used to evaluate the effect of metformin on cervical can-
cer cell proliferation. The IC50 value of metformin was
25.13+0.99 mM and 19.43 £ 1.41 mM in HeLa cells and
SiHa cells, respectively (Fig. 1a). Metformin also inhib-
ited cervical cancer cell proliferation in a time-
dependent manner, when cervical cancer lines were
treated with metformin for 24 'h, 48 h and 72 h (Fig. 1b).
PCNA is a molecular marker of cell proliferation and is
commonly used in evaluating cell growth status (Branca
et al,, 2007). Detection of PCNA in the nuclear protein
extracts of SiHa and HeLa cells by western blot
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indicated a decrease in PCNA following treatment with
metformin at 5 mM, 10 mM, and 20 mM (Fig. 1c).

Promoting cancer cells apoptosis is a characteristics of
chemotherapy drugs. In our present study, we used flow cy-
tometry to detect the effect of metformin on inducing cer-
vical cancer apoptosis. As shown in Fig. 1d, the apoptosis
ratio of HeLa cells increased from 11.61 + 0.47% to 39.04 +
1.88% and the apoptosis ratio of SiHa cells increased from
5.69 +1.02% to 12.31 + 1.63% when these cells were treated
with 20 mM metform for 48 h. Inducing cancer cell cycle ar-
rest is another characteristics of chemotherapy drugs. In our
present study, we also used flow cytometry to measure the
effect of metformin on causing cervical cancer cell cycle ar-
rest. As shown in Fig. le, the percentage of GO/G1 phase
cells increased and the percentage of S phase cells decreased
when HeLa and SiHa cells were treated with 20 mM
metform for 48 h.

P53 protein is an important regulator of cell prolifera-
tion and inhibits HPV E6 protein-induced ubiquitination
of proteasome to exert the antitumor effect [26, 27]. Dis-
coidin domain receptor 1 (DDR1) is a collagen binding
receptor and also act as an activator of p53 in cancer cell

proliferation processes [28]. In this study, SiHa and
HelLa cells were treated with varying concentrations of
metformin for 48 h, followed by western blotting to as-
sess DDR-1 and p53 expression. As metformin concen-
tration increased from 5mM to 20 mM, the expression
of DDR-1 and p53 protein increased in the cervical can-
cer cell lines. Metformin upregulated DDR-1 expression
activating p53 in the tumor cells in a dose-dependent
manner (Fig. 1f). These results suggest that metformin
increased DDR-1 expression along with p53 activated to
inhibit the proliferation of cervical cancer cells. Taken
together, these results indicate that metformin decreased
cervical cancer cell proliferation.

Metformin Upregulates MICA and HSP70 expression to
increase the sensitivity of tumor cells to NK cell
cytotoxicity

Tumor immune escape is an important feature of tumor
invasion and metastasis [25]. Restoring the sensitivity of
the body to tumor immune escape is the main means to
cancer immunotherapy. MICA is a membrane protein
that is involved in anti-infective immunity and antitumor
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immunity. MICA expression on the tumor cell surface is
usually low [29]. When MICA protein is activated on
the tumor cell surface, MICA binds to its ligand,
NKG2D, on the surface of NK cells to enhance the kill-
ing effect of NK cells on tumors [30, 31]. Furthermore,
all the other NKG2D ligands, MICB and ULBPs (1 to 6),
are also binds to NKG2D to show their antitumor im-
munity [32].

HSP70 is a common molecular chaperone that is
expressed in the membranous organelles of all cells. It is
mainly involved in protein synthesis and processing [33—
35]. Under normal circumstances, HSP70 expression is
relatively low; however, under the conditions of protein
damage caused by heat shock and hypoxia, HSP70 pro-
tein may be regulated by the PI3K/AKT/NRF2 pathway,
and its expression is increased [36, 37]. A previous study
has shown that HSP70 plays a synergistic role with im-
mune cells in antitumor immunity [38]. Moreover, heat
shock factor 1 (HSF-1), one of the best known activators
of HSP70 expression, is also an activator of the MICA
gene promoter [39]. Therefore, we assessed HSF-1,
HSP70 and MICA expression in cervical cancer cells
after metformin treatment and also investigated the sen-
sitivity of NK-92 cells to cancer cells. We also evaluated
all the other NKG2D ligands expression in the surface of
cervical cancer cells. As shown in Fig. 2a and b, metfor-
min increased HSF-1, MICA and HSP70 protein expres-
sion in SiHa and HeLa cells and also induced MICA
expression on the surface of human cervical cancer cells.
However, metformin did not induce MICB, ULBPI,
ULBP2/5/6 and ULPB3 expression on the surface of hu-
man cervical cancer cells (Fig. 2b). In addition, the
mRNA expression of HSP70 gene and MICA gene in-
creased in SiHa and HeLa cells when treated with met-
formin (Fig. 2c).

We further assessed LDH efflux in the SiHa and HeLa
cells and evaluated the effect of metformin on NK cell-
mediated killing of human cervical cancer cells. Varying
concentrations of metformin treatment (5 mM, 10 mM,
and 20 mM) increased the NK-92 cell lethality to SiHa
and HeLa cells from 37.45 + 0.64% to 40.45 + 0.71(SiHa)
and from 49.04 + 0.32% to 86.00 + 2.24% (HeLa), respect-
ively, in a dose-dependent manner (Fig. 2d, Table 2).
These results suggest that metformin induces MICA and
HSP70 expression on the surface of human cervical can-
cer cells. Additionally, an increase in MICA expression
enhanced NK cell cytotoxicity.

Metformin increases MICA expression via the PI3K/Akt
pathway

Studies have shown that metformin inhibits the invasion
and metastasis of tumor cells and induces degradation of
cyclin D1 through AMP-activated protein kinase/glyco-
gen synthase kinase 3 beta (AMPK/GSK3p) signaling
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axis to participate in the protein ubiquitination process
[40]. To further elucidate the molecular mechanism by
which metformin inhibits the proliferation of cervical
cancer cells, SiHa and HeLa cells were treated with vary-
ing concentrations of metformin (0 mM, 5mM, 10 mM,
and 20 mM) for 48 h, followed by western blotting to de-
tect PI3K (p110), p-PI3K p85 (Tyrl99), Akt, and p-Akt
(serd73) protein expression. As the concentration of
metformin increased, the expression of p-PI3K p85
(Tyr199) and p-Akt (ser473) decreased (Fig. 3a). When
PI3K/Akt signaling was blocked with the PI3K/Akt sig-
naling inhibitor, LY294002, the inhibitory effect of met-
formin on the p-PI3K p85 (Tyr199) and p-Akt (ser473)
was enhanced (Fig. 3b). In addition, after using the
LY294002 to block the PI3K/Akt signaling, the induction
of MICA by metformin also increased, whereas
LY294002 had little effect on HSP70 expression (Fig.
3c). Because metformin targets AMPK signaling and the
target of LY294002 is PI3Ka/8/p [41], these different
pathways may act synergistically, whereas compounds
with the same targets may have antagonistic effects.
These results indicate that metformin inhibits tumor cell
proliferation by increasing the expression of MICA pro-
tein on the tumor cell surface via disrupting the PI3K/
Akt pathway.

Metformin inhibits the growth of cervical Cancer
Xenograft in a nude mouse model

Tumor cell line-derived xenograft animal modeling has
been extensively used in antitumor drug screening and
evaluation because such models are easy to construct,
the tumor formation rate is high, and the experimental
cycle is short [8]. In this study, SiHa cells were used to
develop a cervical cancer xenograft model in BALB/c
nude mice to study the inhibitory effect of metformin on
tumor growth. After successful modeling, 50 mg/kg/d
and 250 mg/kg/d metformin were administered (by oral
gavage) to mice bearing cervical cancer xenografts for 23
consecutive days (Fig. 4). Compared to the model group,
the mice in the 250 mg/kg/d metformin treatment group
exhibited slower tumor growth. Assessment of PI3K
(p110), p-PI3K p85 (Tyrl99), Akt, p-Akt (serd73),
MICA, HSP70 and p53 expression in the tumor xeno-
grafts showed that xenografts of the 250 mg/kg/d met-
formin treatment group had significantly lower p-PI3K
p85 (Tyr199) and p-Akt (ser4d73) levels, whereas the
MICA, HSP70, and p53 expression in the xenografts of
the 250 mg/kg/d metformin treatment group was signifi-
cantly higher, compared to the model group. These re-
sults suggest that metformin inhibits p-PI3K p85
(Tyr199) and p-Akt (ser473) expression; upregulates
MICA and p53 expression; and inhibits the growth of
cervical cancer xenografts in mice.
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extensively used in clinical practice because of its safety
and efficacy profile, as well as being inexpensive. Studies
have shown that metformin can target one or more sig-
naling pathways to inhibit tumor cell proliferation, inva-
sion, and migration [42]. For example, metformin
directly activates the AMPK pathway and reduces
insulin-like growth factor 1 (IGF-1) expression to inhibit

Discussion

Classic drug design strategies generally target a single
protein or signaling pathway. However, the pathogenesis
of most diseases, including cancers, is complex. Thus, it
is necessary to develop drugs that target multiple pro-
teins and disease-related signaling pathways. Metformin,
a biguanide blood sugar-reducing agent, has been
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Table 2 Ration of cervical cancer cells killed by NK-92 cells with different concentrations of metformin

Concentrations of Metformin

% the killed cervical cancer cells

(mM)

HeLa SiHa
0 49.04+0.32 37.45+£0.64
50 63.114£1.71°%* 38.02+0.91
100 70.90+0.18** 39.25+0.47*
200 86.00+2 24 40.45+0.71*

(*p<0.05; **p=<0.01; vz 0mM, n=3)

insulin signaling, block the glucose metabolism pathway
of tumor, and exert antitumor effect [43, 44]). A recent
study identified AMPK O-GlcNAcylation as anti-
proliferative mechanism of metformin in cervical cancer
[45]. Since HeLa cells do not express LKB1 (which phos-
phorylates AMPK) [46], it is shown in some studies that
this cell line might be resistant to metformin [47]. How-
ever, metformin exhibits a complex anti-tumor mechan-
ism for its small molecular weight (MW: 165.6 )[48,
49]). In this study, we found that metformin inhibits cer-
vical cancer cell proliferation in a dose-dependent man-
ner through non-AMPK signaling pathways.

P53 is a tumor suppressor. More than 50% of all ma-
lignant tumors have p53 mutation. The protein encoded
by p53 gene is a transcriptional factor called TP53 that
controls the initiation of cell cycle. P53 protein is mainly
distributed in the nucleoplasm of cells and specifically
binds to DNA. Its activity is regulated by post-
translational modification, such as phosphorylation,
acetylation, methylation, and ubiquitination [26, 50].
Normal p53 acts as the “guardian of the genome,”
screening for sites of DNA damage in the G1 phase and
monitoring the integrity of the genome. In the event of
DNA damage, p53 prevents DNA replication to pro-
vide sufficient time for the repair of the damaged
DNA. It triggers apoptosis if the repair of the dam-
aged DNA fails. During the cell cycle, p53 mainly
functions in the monitoring of the G1 and G2/M
phase check points, and this function is closely re-
lated to transcriptional activation. Discoidin domain
receptor 1 (DDR1) can activate p53 by binding its re-
ceptor. In our present study, we showed the evidence
that metformin upregulated DDR-1 expression inhibit-
ing the proliferation of cervical cancer cells, promot-
ing cervical cancer apoptosis and suppress cervical
cancer xenograft tumor tissues growth in a dose-
dependent manner along with activating p53.

MICA is a member of the MHC class I molecular fam-
ily and is expressed on the cell surface membranes. Re-
cent research has shown that MICA is associated with
the development of a variety of tumors. It is a stress
marker and is expressed in pathogenic bacteria, tumors,
and organ transplant recipients [30]. MICA is the recep-
tor of NKG2D, an important activating protein on the
NK cell surface, and NK cells play a very important role
in tumor innate immunity to kill tumor cells by recog-
nizing tumor cell surface markers and producing a cyto-
toxic effect [51]. Previous studies have shown that high
glucose protects pancreatic cancer from NK cell-
mediated killing through suppressing MICA/B expres-
sion. Moreover, high glucose inhibited AMP-activated
protein kinase signaling, leading to high expression of
Bmil, a polycomb group (PcG) protein which was found
to be up-regulated by high glucose, and mediated the in-
hibition of MICA/B expression through promoting
GATA2 in pancreatic cancer [52]. AMP-activated pro-
tein kinase (AMPK)-histone deacetylase 5 (HDACS5)
pathway promoted nuclear accumulation of HIF-1a and
functional activation of HIF-1 by deacetylating heat
shock protein 70(HSP70) in the cytosol, indicating a
novel link between AMPK, HIF-1a, and HSP70 [53].
HSP70 is not immunogenic but can participate in anti-
gen processing after binding to polypeptides and en-
hance the immune response. A clinical trial injected
purified HSP70 into children with brain cancer and
found an antitumor effect and certain feasibility and
safety in the antitumor therapy [54, 55]. Another study
has also shown that HSP70 inhibits brain tumor devel-
opment in a C6 glioblastoma mouse model, which is as-
sociated with NK cell and T lymphocyte killing abilities
of glioblastoma, as well as increased activities of NK cells
and CD81" T lymphocytes [55]. In the present study, we
found that metformin increased HSF-1, MICA and
HSP70 protein expression in SiHa and HeLa cells and
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Relative Density

also induced MICA expression on the surface of human
cervical cancer cells. However, metformin did not induce
MICB, ULBP1, ULBP2/5/6 and ULPB3 expression on
the surface of human cervical cancer cells. In addition,
the mRNA expression of HSP70 gene and MICA gene
increased in SiHa and HeLa cells when treated with met-
formin. We concluded that metformin activated NK cells
by regulating MICA though a transcription mechanism
to mediate innate immunity. As an immunopotentiator,
merformin could upregulate HSE-1, one of the best
known activators of HSP70 expression, to activate

HSP70 and is involved in specific immune activation in
the nude mice and exerted antitumor effect.

In the classic PI3BK/Akt/mTOR pathway, PI3K is a
family of many lipid kinases consisting of a regulatory
subunit, p85, and a catalytic subunit, p110. When a lig-
and binds to the membrane receptor, the receptor acti-
vates p53 and recruits pll0, thereby catalyzing the
formation of phosphatidylinositol 3-phosphate (PI3P) by
phosphatidylinositol 4, 5-bisphosphate (PIP2) on the
inner surface of the membrane. PI3P, as a second mes-
senger, further activates Akt and phosphoinositide-
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dependent kinase 1 (PDK1). Akt, also known as protein
kinase B (PKB), is an important downstream molecule of
PI3K. Akt immediately attained its activated state by
phosphorylation (p-Akt) and activated Akt and mTOR
are indicators of poor prognosis in cervical cancer pa-
tients. They play an important role in regulating cell
growth, proliferation, survival, and glucose metabolism
[56, 57]. A previous study has shown that PI3K is highly
expressed in a variety of tumors, including cervical can-
cer [56]. When PI3K is inhibited, the corresponding ex-
pression of downstream Akt and mTOR is reduced, and
the cell signaling pathway is blocked. Therefore, cell pro-
liferation is inhibited. Although Akt is the core molecule
of this signaling pathway, only few small-molecule inhib-
itors directly inhibit Akt by suppressing its phosphoryl-
ation. In the present study, we did not block mAbs for
NKG2D and /or MICA to demonstrate the specific
activity on the NKG2D receptor. However, we used

LY294002, a specific PI3K inhibitor, to block the PI3K/
Akt pathway. The results showed that combining met-
formin with LY294002 showed synergistic effect on up-
regulating MICA in cervical cancer cells. In general,
combining two active molecules having the same target
in a signal pathway may result in antagonistic effect,
while combination of two active molecules having differ-
ent targets may lead to synergistic effect [58]. That is to
say, metformin directly reduced p-PI3K p85 (Tyr199)
and p-Akt (serd73) levels in cervical cancer cells, which
probably resulted in the antitumor effect. According
with our previous study [59], metformin did not target
PI3Ks or Akt.

According to the clinical application guidelines for
metformin [60], the daily dose of metformin should not
exceed 2000 mg/d. Based on the Meeh-Rubner conver-
sion formula and mouse and human bodyweights and
specific surface areas as well as previous studies on
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tumor growth inhibition by metformin, we find the ap-
propriate doses of metformin intraperitoneal injection to
be 50-250 mg/kg/d. We selected low and high doses of
metformin, 50 mg/k/d and 250 mg/kg/d, respectively,
which were equivalent to 384.5 mg/d and 1922.5 mg/d in
human, with the high dose nearly matching the highest
dose of metformin in clinical practice. This study
showed that metformin significantly reduced the tumor
xenograft size in the treatment groups, compared with
the model group, suggesting that metformin inhibited
PI3K/Akt signaling, upregulated p53 signaling, activated
MICA protein expression in the tumor cells and inhib-
ited the growth of cervical cancer xenografts in the
BALB/c nude mouse model.

Conclusions

In short, this study indicated that metformin targets both
the PI3K/Akt and p53 pathways and exerts antitumor
effects in the body. This study provides insights into the
development of multi-target inhibitors for cervical cancer.
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