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Abstract

Gliomas, especially glioblastomas, represent one of the most aggressive and difficult-to-treat human brain tumors.
In the last few decades, clinical immunotherapy has been developed and has provided exceptional achievements
in checkpoint inhibitors and vaccines for cancer treatment. Immunization with cellular vaccines has the advantage
of containing specific antigens and acceptable safety to potentially improve cancer therapy. Based on T cells,
dendritic cells (DC), tumor cells and natural killer cells, the safety and feasibility of cellular vaccines have been
validated in clinical trials for glioma treatment. For TAA engineered T cells, therapy mainly uses chimeric antigen
receptors (IL13Rα2, EGFRvIII and HER2) and DNA methylation-induced technology (CT antigen) to activate the
immune response. Autologous dendritic cells/tumor antigen vaccine (ADCTA) pulsed with tumor lysate and
peptides elicit antigen-specific and cytotoxic T cell responses in patients with malignant gliomas, while its pro-
survival effect is biased. Vaccinations using autologous tumor cells modified with TAAs or fusion with fibroblast cells
are characterized by both effective humoral and cell-mediated immunity. Even though few therapeutic effects have
been observed, most of this therapy showed safety and feasibility, asking for larger cohort studies and better
guidelines to optimize cellular vaccine efficiency in anti-glioma therapy.
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Background
Arising from supporting glial cells, gliomas represent
over 36% of malignant primary central nervous system
(CNS) tumors [1]. Gliomas vary in aggressiveness from
low-grade to highly malignant, with 5 year overall sur-
vival no greater than 35% [2]. According to the patho-
logical features and clinical outcomes, the World Health
Organization (WHO) grades gliomas on a scale of I to
IV. The most benign brain tumor is designated grade I,
has distinct boundaries, grows slowly, rarely spreads and
typically arises in childhood. The most common glioma
in adults is glioblastoma (GBM), an astrocytoma

designated by the WHO as grade IV. GBMs remain
among the most difficult brain tumors to treat, with a
median survival of less than 2 years, despite surgical re-
section, radiation, and chemotherapy [3]. Over the past
decades, an explosion in the understanding of treatment
strategies of gliomas has progressed beyond the standard
of care and consists of complete resection followed by
radiotherapy and pharmacological treatment with che-
motherapeutic agents, such as temozolomide. For ex-
ample, on the basis of mutations in the genes encoding
the isocitrate dehydrogenases IDH1 and IDH2, co-
deletion of 1p19q (oligodendroglioma) and methylation
of O6-Methylguanine-DNA methyltransferase (MGMT)
have been subclassified as molecular diagnostics and
prognostic markers for gliomas [4]. Unfortunately, lim-
ited therapeutic access to brain tumor and peritumoral
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tissue caused by the blood-brain barrier (BBB) still offers
a new challenge to optimize glioma treatment, despite
such efforts [5]. Considering the special anatomical pos-
ition of gliomas, new cancer therapies need to be discov-
ered to achieve optimally safer, less invasive and more
effective treatment. On the basis of these observations,
the clinical success of immunotherapy seems a predict-
able option in basic biological principles of glioma diag-
nosis and prognosis.
Cancer immunotherapy, also known as immuno-

oncology, is a type of cancer treatment that uses the
power of the body’s own immune system to prevent,
control, and eliminate cancer [6, 7]. Recently, immuno-
therapy has been proposed against existing neoplasms,
including breast cancer, lung cancer and even glioma,
and may show significant promise where other ap-
proaches have failed [8]. Based on immune checkpoint
inhibitors and vaccine-mediated immunization, previous
studies have reported immunotherapeutic strategies that
reverse immunosuppressive tumor environment, stimu-
late antigen presentation, and induce anti-tumor T cell
responses [9]. For example, the dendritic cell (DC)-based
vaccinations has been established as a promising ap-
proach for the immunotherapy of cancer [10–12]. In
tumor cells, the physical modalities inducing immuno-
genic cell death (ICD), such as radiotherapy, UV light C,
high hydrostatic pressure (HHP), hypericin-based photo-
dynamic therapy (Hyp-PDT) or hyperthermia, are of
particular interest in the development of DC-based vac-
cines for cancer immunotherapy [13]. Using an orthoto-
pic HGG murine model, Garg et al.. observed that DC-
based vaccines pulsed with Hyp-PDT-induced ICD pro-
vided strong anti-glioma survival benefit by inducing an
immunostimulatory shift in the brain immune contex-
ture from T regulatory cells (Tregs) to T helper 1 (Th1)/
cytotoxic T lymphocyte (CTL)/Th17 cells. Meanwhile, a
combination of ICD-based DC vaccines and temozolo-
mide synergistically prolonged overall survival in malig-
nant glioma-bearing mice, leading to ~ 50% long-term
survivors [14]. Thus, therapeutic vaccines represent an-
other valuable option for the management of glioma im-
munotherapy. Moreover, the demonstration of the
efficacy of a vaccine for gliomas seems relatively
straightforward to improve both anti-tumor innate and
adaptive immune responses.
Surprisingly, cellular vaccines, which can be divided

into autologous and allogeneic vaccines, have achieved
significant levels of objective response in glioma treat-
ment [15]. Theoretically derived from the patient’s own
tumor, autologous vaccines have numerous potential ad-
vantages. The most important benefit is that autologous
vaccines are likely to carry the unique tumor-associated
antigens (TAA), which have been investigated as the
specific immunological targets for immunotherapy in

particular patients [16]. In a phase I/II trial in patients
with recurrent malignant glioma, a DC-based multi-
peptide vaccine derived from glioma-associated antigens
(GAA) showed expected clinical efficacy in 22 patients,
about 41% of vaccinated patients remained progression-
free for ≥ 12 months [17]. More importantly, the safety
and measurable immune response of the autologous
ICT-107 vaccines produced from TAA-pulsed DC were
confirmed for patients with newly diagnosed GBM in a
phase I clinical trial [18]. However, even though vaccine
efficacy has been demonstrated, the difficulty to produce
and harvest enough vaccine doses still exists and dimin-
ishes its ultimate availability for clinical usage as an au-
tologous vaccine. Unlike autologous cell therapy,
allogeneic vaccines are composed of intact or modified
cells harboring shared antigens found on a large per-
centage of gliomas from other patients or healthy do-
nors. Chimeric antigen receptors (CARs) are artificial
fusion proteins that incorporate an extracellular ligand
recognition domain, a transmembrane domain, and an
intracellular signaling domain to induce T cell activation
upon antigen binding [19, 20]. Genetic engineering of
allogeneic T cells to express CARs directed against spe-
cific antigens has explored a new way to optimize per-
sonalized glioma therapy [21]. In this review, we
summarize the safety, feasibility, and immune/tumor re-
sponse of cellular vaccines based on T cells, DC cells,
tumor cells and natural killer (NK) cells in preclinical
and clinical trials for glioma immunotherapy, and dis-
cuss the future prospects to optimize vaccine-mediated
immunity according to current findings (Fig. 1).

Current strategy of cellular vaccine in glioma
immunotherapy
High-grade glioma, especially recurrent GBM, is almost
inevitable, and the prognosis remains poor, with a me-
dian survival of 12–15 months [22]. Immunotherapies
using autologous vaccines are now considered promising
approaches for treating patients with malignant gliomas.
The microenvironment of brain tumors contains unique
tissue-resident cell types, in addition to cancer cells, in-
cluding microglia, astrocytes, neurons and immune cells.
The normal brain is considered an “immune privileged”
organ that is sheltered from immune cell entry through
the integrity of the BBB, which physically protects the
brain from inflammatory factors that can be cytotoxic
and cause neurodegeneration [23, 24]. On the other
hand, peripheral immune cells infiltrating from the cir-
culation can cross the BBB and enter the CNS after in-
jury and, in disease, then join resident immune cells to
modulate neuroprotective lymphocyte responses and
brain function via their interactions with glia [25]. In-
deed, current data indicate that therapeutic vaccines
based on T cells, DC cells, tumor cells and NK cells are
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feasible and generally well tolerated. Furthermore, their
clinical efficacy has been demonstrated in several ran-
domized clinical trials.

TAA engineered T cells
Adoptive T cell transfer can overcome the in vivo
progression of gliomas by using autologous cells with
engineered receptor specificities for TAAs [26].
Antigen-specific T cells can be expanded ex vivo for
subsequent administration, which produces the cyto-
kines that are essential for T cell expansion and sus-
tained anti-tumor activity [27]. CAR-engineered T cell
(CAR T cell) therapy is a promising therapeutic ap-
proach genetically generated with modified T cells to
express recombinant protein CARs that may be ef-
fectively and safely applied to GBMs to reduce recur-
rence rates [28, 29]. Several cell surface proteins, such
as interleukin 13 receptor α2 (IL13Rα2), epidermal
growth factor receptor variant III (EGFRvIII), ephrin
type-A receptor 2 (EphA2), and human epidermal
growth factor receptor 2 (HER2), have been found to
actively target CAR T cell therapy in preclinical
models [30–33], but only a few of these cell-surface
receptors have been validated in clinical trials. Ac-
cordingly, a phase I/II clinical study of adoptive im-
munotherapy suggests that anti-EGFRvIII CAR-

engineered T cells effectively produced the effector
cytokines and interferon-γ, contributing to lyse the
antigen-expressing glioma cells [34]. Meanwhile, an-
other completed phase I clinical trial program
(NCT01109095) reveals that anti-HER2 CAR CMV-
specifc T cells seem to be able to inhibit HER2 + gli-
oma growth [35]. Here, to improve anti-glioma
responses, we discuss the use of TAA-engineered T
cells through their clinical strategies and outcomes
under investigation.

IL13Rα2-engineered T cells
IL13Rα2, a cell-surface receptor positively expressed in
82% of GBM samples and > 70% of glioma stem-like
cancer initiating cells [36, 37], was previously thought to
be directly associated with increased mesenchymal sig-
nature gene expression and poor patient survival [38].
For the treatment of recurrent GBM, Christine et al.
showed the first-in-human clinical experience for CAR-
engineered IL13Rα2-specific CD8+ CTL and observed
significant tumor regression. Briefly, for autologous
IL13-zetakine+ CD8+ CTL manufacturing, the peripheral
blood mononuclear cells (PBMCs) were stimulated with
anti-CD3 antibody, followed by DNA electroporation,
drug selection and ex vivo expansion using OKT3 and
irradiated feeders. In three patients with recurrent GBM,

Fig. 1 Cellular vaccine with TAA-engineered T cells in anti-glioma clinical trial. In glioma treatment, particularly, recurrent GBM, therapy with TAA-
engineered T cells mainly uses chimeric antigen receptors (CARs) and DNA methylation-induced technology. For CAR-engineered T cells, single-
chain variable fragments (scFv) of cell-surface receptor-engineered T cells mainly include IL13Rα2, EGFRvIII and HER2 selective ligands. In addition,
treatment with DNA-demethylating agents, such as 5-aza-2’-deoxycytidine, facilitates CT antigen expression and constitutes an attractive
immunological target for cancer immunotherapy. E13Y, IL13Ra2-selective ligand IL13; FRP5, HER2-specific MAb; CD4tm, CD4 transmembrane
domain; CD8tm, CD8 transmembrane domain; 4-1BB, CD137 cytoplasmic signaling domain; CD3ζ, cytoplasmic signaling domain sequences
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the feasibility of repetitive intracranial administration of
first-generation IL13Rα2-specific CD8+ CAR T cells was
demonstrated and transient anti-tumor activity for some
patients was reported in the absence of serious adverse
events, such as occlusion, malfunction, or infection [30].
Building on these results, the modified IL13Rα2-targeted
CAR T cells were further reported to improve anti-
tumor potency and T cell persistence by 4-1BB co-
stimulation and IgG4-Fc linker mutation [39]. A patient
with recurrent multifocal GBM who received treatment
with modified IL13Rα2-targeted CAR T cells had regres-
sion of all intracranial and spinal tumors, along with sig-
nificant increases in the levels of cytokines C-X-C motif
chemokine ligand 9 (CXCL9) and CXCL10, as well as
immune cells in the cerebrospinal fluid [28]. Comparing
the ability to abrogate tumor growth at local and distant
sites, Christine et al. suggested intraventricular adminis-
tration of CAR T cells is better than intracavitary ther-
apy for the treatment of malignant brain tumors.
Nevertheless, the above evidence of the safety and anti-
tumor activity of IL13Rα2-targeted CAR T cell immuno-
therapy still needs to be evaluated in a larger cohort of
patients.

EGFRvIII-engineered T cells
Negative prognostic indicator EGFRvIII is expressed
in about 25–33% of all patients with GBMs [40] and
is the most commonly mutated gene among the
EGFR family in glioma [41]. In EGFRvIII-expressing
newly diagnosed GBM, a peptide vaccine targeting
EGFRvIII (rindopepimut) was previously evaluated
and found to be well tolerated, providing immune
responses with prolonged progression-free survival
[42, 43]. More recently, O’Rourke et al. conducted a
phase I safety study of autologous CAR T cells tar-
geted to EGFRvIII (CART-EGFRvIII) in 10 patients
with recurrent GBMs. Intravenous infusion of a single
dose of CART-EGFRvIII cells was found to be feasible
and safe, without off-tumor toxicity or cytokine re-
lease syndrome [44]. For vaccine delivery, CART-
EGFRvIII cells were detected transient expansion in
peripheral blood. Trafficking of CART-EGFRvIII cells
were also found in regions of active GBM in 7 pa-
tients with surgical intervention. Compared to pre-
CART-infusion, tumors had markedly induced expres-
sion of immunosuppressive molecules (IDO1 and
FoxP3) post-infusion. However, marked tumor regres-
sion was not observed by MRI over 18 months of
follow-up after CART infusion. It is possible that this
invalid clinical benefit of CART-EGFRvIII, which can
be definitively determined from a large sample size,
may improve the responsiveness of tumors through
intraventricular therapy.

HER2-engineered T cells
Elevated HER2 expression has been reported in 41% of
primary GBM samples and in 81.4% of GBM primary
cell lines and were correlated with impaired survival [45,
46]. In preclinical models of GBM, bispecific CAR mole-
cules that incorporated 2 antigen recognition domains
for HER2 and IL13Rα2 showed the functional superior-
ity of T cell expressing antigens ex vivo and in an ortho-
topic GBM xenograft model [47]. However, the safety
concerns of autologous CART-HER2 cells were raised
by the report of a serious adverse event following the ad-
ministration 1 × 1010 T cells of vaccine based on trastu-
zumab [48]. While administration of up to 1 × 106/m2

CART-HER2 cells showed no evident toxicities, unfortu-
nately, the expansion and persistence of CART-HER2
cells was limited [49]. To treat HER2-positive GBM,
Nabil Ahmed et al. developed HER2-specific CAR-
modified virus-specific T cells (CAR VS Ts-HER2) with
an FRP5-based exodomain and a CD28.ζ endodomain
[50]. Up to 1 × 108/m2 CAR VS Ts-HER2 were infused
intravenously without dose-limiting toxic effects in 17
patients with progressive GBM. After the infusion, CAR
VS Ts-HER2 was detectable in the peripheral blood for
up to 12 months, with no observed expansion in periph-
eral blood (but expansion at GBM sites). Of 16 evaluable
patients, 50% of patients had clinical benefit, as defined
by a partial response (N = 1, over 9 months) and stable
disease (N = 7, 8 weeks–29 months). Despite the feasibil-
ity and safety of CAR VS Ts-HER2, a clinical strategy
using it alone or in combination with other immuno-
modulatory approaches is warranted to improve the
anti-GBM activity of CAR VSTs-HER2 by augmenting
their expansion and persistence.

DNA methylation-induced T cells
In cancer cells, epigenetic regulation by DNA methyla-
tion facilitates cancer/testis (CT) antigen expression and
constitutes an attractive immunological target for cancer
immunotherapy [51–53]. Recently, a novel approach was
reported based on the adoptive transfer of cytotoxic lym-
phocytes with specificity for antigens induced by a DNA
demethylating agent [54]. In this report, Kirkin et al..
found that after treatment with 5-aza-2’-deoxycytidine, a
DNA-demethylating agent, activated CD4+ T helper cells
from the patients with recurrent GBM could express a
broad repertoire of endogenous CT antigens and serve
as antigen-presenting cells to generate autologous CTL
and NK cell responses. This group also revealed that in-
jections of tumor-reactive lymphocytes generated by this
DNA demethylation-mediated procedure into peripheral
vein of GBM patients generated persistent anti-tumor
immune response without treatment-related adverse ef-
fects. Treatment of cancer cells with 5-aza-2’-deoxycyti-
dine also leads to the increased levels of MHC and
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costimulatory molecules (CD80, CD86, and CD40) ne-
cessary for the antigen-presenting function of DC cells
[55, 56]. In addition, as an important determinant of
anti-tumor immune response, DNA methylation aberra-
tion implicates epigenetic modulation as a combination
regimen for potential precision immunotherapy with
checkpoint blockade [57].
Overall, TAA-engineered T cells, along with DNA-

demethylated T helper cells against recurrent GBMs, ini-
tially confirm the safety and anti-tumor activity of au-
tologous T cell immunotherapy, providing a minimally
invasive strategy for glioma treatment and prevention.

Autologous dendritic cell/tumor antigen vaccine (ADCTA)
DC therapy is a safe and well tolerated immunothera-
peutic method, and its clinical effectiveness has been val-
idated in melanoma, prostate cancer, malignant glioma,
and renal cell carcinoma [58]. Previous studies have
demonstrated that microglia are the predominant
antigen-presenting cells (APCs) in the brain [59], while
DC vaccines are likewise gaining significant clinical at-
tention as a complementary strategy to stimulate T cell
responses [60]. For instance, DC derived from blood
monocytes could further enhance tumor-specific CD8+

T cell polyfunctionality in vivo when administered as a
vaccine [61]. Recently, the presence of human cyto-
megalovirus (HCMV) antigens has been specifically
found in gliomas, but not surrounding normal brain tis-
sue. These unique and immunogenic HCMV antigens
provide an attractive opportunity to leverage HCMV an-
tigens as tumor-specific immunotherapy targets whilst
minimizing toxicity [62]. To prove this conjecture, a ran-
domized pilot trial in patients with newly diagnosed
GBM was conducted to demonstrate that HCMV pp65
RNA-loaded DC vaccination experienced enhanced
tumor-specific CD8+ T cell polyfunctionality and signifi-
cantly increased overall survival [63]. The initial results
obtained from clinical trials of autologous antigen or
peptide-pulsed DC appear to be encouraging for a var-
iety of tumors [64, 65]. The clinical trials testing DC vac-
cines after modified or adjuvant treatment with novel
chemotherapy for gliomas defined as malignant or spe-
cial subtype are underway at the NIH Clinical Center
(Table 1). Here, we mainly review the feasibility and
safety of autologous DC vaccines in phase I-III clinical
trials and discuss recent progress in immunotherapy
using autologous DC-based vaccination (Fig. 2).

Fusions of autologous DC and glioma cells
DC can sample tumor antigens through capturing the
‘eat me’ or ‘do not eat me’ signal of tumor cells [66].
Molecules such as milk fat globule-EGF factor 8 (MFG-
E8) bridge the phosphatidylserine of dying cells with in-
tegrin αvβ3 of DC, then link to downstream signals

through integrin receptors on the phagocyte [67].
Tumor lysates include poorly identified high-grade
glioma-specific tumor antigens, which have practicality
in terms of personalized medicine [68]. Previous studies
have indicated that vaccination with glioma cell lysate-
pulsed DC elicited a stronger specific CTL response,
thereby preventing glioma formation in C57BL/6 mice
model [69]. More importantly, combinatorial treatment
of tumor lysate-pulsed DC vaccines and other thera-
peutic strategies, such as checkpoint inhibitors [70],
angiogenesis inhibitors [71] and cytokine gene therapy
[72], conferred a greater survival advantage and signifi-
cantly increased the therapeutic anti-glioma efficacy. In
addition, counteracting the immunosuppressive environ-
ment before vaccination is requisite to facilitate the
long-term anti-glioma immune responses [9]. Nowadays,
using DC from the peripheral blood of patients pulsed
with an autologous tumor lysate is currently being evalu-
ated in phase I/II clinical trials for gliomas [73], but the
objective response rate still has been relatively low in
some research.
Vaccination with tumor lysate-pulsed DC elicits

antigen-specific and CTL responses in patients with ma-
lignant glioma. The percentage of NK cells, such as
CD16+ and CD56+ cells, in peripheral blood lympho-
cytes were safely increased after immunization [73, 74].
Accordingly, a significant positive correlation was ob-
served between activated NK cell populations and overall
survival in patients administrated with autologous tumor
lysate-pulsed DC vaccination [75]. For newly diagnosed
GBM, autologous vaccination with tumor lysate-pulsed
DC enhanced the precursor frequency of CD4+ T and
CD4+ interferon (IFN) γ-producing cells, suggesting an
induced tumor-specific CTL response [76]. A recent
phase I study was conducted to evaluate the safety and
bioactivity of vaccination with tumor lysate-pulsed DCs
in patients with GBM and anaplastic astrocytoma. In re-
sponse to tumor lysate after vaccination, most of pa-
tients displayed robust systemic cytotoxicity as indicated
by peripheral IFN γ accumulation and intratumoral
CD8+ T cell infiltrate. Furthermore, no clinical evidence
of autoimmune diseases was detected, suggesting that
tumor lysate-pulsed DC vaccination was safe [77, 78]. By
comparing specific immune responses before or after
vaccination, up-regulation and/or cytoplasmic accumula-
tion of chemoresistance-associated peptides, including
Wilms tumor protein (WT1), glycoprotein 100 (gp100),
and MAGE family member A3 (MAGEA3), were noted
in tumors being treated with immunotherapy [79]. Yu
et al. noted significant expansion in CD8+ antigen-
specific T cell clones against TAAs, including
melanoma-associated antigen (MAGE) 1, gp100, and
HER2, and the CD8+ T cell intratumoral infiltrate was
increased in 50% of patients [77]. Moreover, tumor
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lysate and IL-18 loaded DC vaccines can elicit a specific
CD8+ cytotoxic T lymphocyte response in GBM pa-
tients. The cytotoxic responses were augmented by
transfecting DC with the gene for IL-18, but significantly
inhibited by anti-human leukocyte antigen (HLA) class I
antibody [80].
In addition, several small size studies showed biased

results with or without a pro-survival effect from tumor
lysate-pulsed DC vaccination in glioma patients. Ryuya
et al. showed the maturation of DC with OK-432,
granulocyte-macrophage colony-stimulating factor (GM-
CSF) and IL-4 that were pulsed with autologous tumor
lysate showed better survival in 24 patients with recur-
rent GBMs. Also, patients injected with both intratu-
moral and intradermal administrations had longer
survival times as compared with intradermal administra-
tion only [81]. A phase II trial demonstrated 53% of
GBM patients (N = 32) exhibited over a 1.5-fold increase
in vaccine-enhanced cytokine (IFN γ) and had signifi-
cantly longer times to tumor progression and survival
[82]. Furthermore, intradermal administration of fusion
cells and subcutaneous injection of recombinant human
interleukin 12 (rhIL-12) at the same site showed a
greater than 50% reduction in tumor size in some pa-
tients without adverse effects and safely induced clinical
anti-tumor effects with malignant gliomas [83]. Ac-
counting for the narrow therapeutic index of rhIL-12
[84], the alteration of chemoresistance-associated pep-
tides may achieve susceptibility of TAA-expressing gli-
oma cells to the specific immune response in DC-based

immunotherapy. However, vaccination with Audencel, a
tumor lysate-charged autologous DC vaccine, failed to
improve progression-free survival and median overall
survival, although no severe toxicity was observed in
those newly diagnosed with GBM (N = 76) [85]. The fac-
tors dictating the efficacy of DC vaccines may represent
a viable strategy to improve anti-tumor immunotherapy.
The enzyme-linked immune absorbent spot (ELISPOT)
is one of the most commonly used to understand the
frequency of cytokine-secreting cells at the single-cell
level [86]. Increased ELISPOT and delayed-type hyper-
sensitivity responses after vaccination could provide
good laboratory markers to predict the clinical outcome
of patients receiving DC vaccination [73, 81]. The con-
tent of tumor-infiltrating lymphocytes (TILs) and T cell
receptor (TCR) repertoire in brain tumors and periph-
eral blood have been proved to be correlated with im-
proved clinical outcome in GBM patients [87]. TCR
repertoires are widely shared sequences that have been
suggested to be over-represented due to their potential
immune functionality or their ease of generation by
V(D)J recombination [88]. After treatment, tracking
TCR repertoire shifts in tumors and peripheral blood
can be used to monitor the treatment-associated im-
mune response without the need to know the specificity
of receptors [89]. Hsu and colleague revealed a statisti-
cally significant correlation between higher degrees of
TCR repertoires and prolonged overall survival in au-
tologous tumor lysate-pulsed DC vaccines-treated GBM
patients [87]. In a prospective case control study that

Fig. 2 Autologous dendritic cell/tumor antigen vaccine (ADCTA) in anti-glioma clinical trial. Vaccination with tumor lysate-pulsed dendritic cells
(DC) elicits antigen-specific, CD4+/CD8+ cytotoxic T cell responses and induces IFN γ secretion in patients with malignant glioma. The peptide
modified DC with cocktail (WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100) had a positively response in HLA-A24+ glioma patients
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enrolled 47 GBM patients with DC vaccine adjuvant
therapy, better outcomes were predicted with younger
age and a lower programmed cell death protein 1 (PD-
1)+/CD8+ ratio in TILs and PBMCs [90]. Further ana-
lysis of the immune system factors demonstrated that
the patients with an immune system equipped with fa-
vorable pre-existing or post-vaccination anti-tumor cap-
abilities, such as IFN γ secretion and CD8+ cells, are
more likely to live longer [91]. Also, another clinical trial
protocol of DC vaccination, including inclusion/exclu-
sion criteria, was proposed and may increase the im-
mune response and safety in pediatric and adult subjects
[92, 93]. Thus, even DC immunotherapy against GBM
has some exciting outcomes, and the bias caused by
sample size, mode of administration and non-specificity
of vaccine-target interactions indicate that investigating
combination therapies or developing meaningful bio-
markers should be studied in further phase II/III clinical
trials.
Standard therapy for GBMs post-surgery includes

radiotherapy and chemotherapy with temozolomide.
For DC vaccination as adjuvant therapy, up to now,
most of the clinical trial showed no serious vaccine-
related adverse events, and it may extend survival
[76]. Early insight into tumor lysate-pulsed DC vac-
cines was provided in a phase III randomized,
double-blinded, placebo-controlled clinical trial (N =
331) and suggested the addition of the vaccination to
standard therapy is feasible and safe [94]. Only 2.1%
of patients experienced any grade 3 or 4 adverse
events that were at least possibly related to treatment
with tumor lysate-pulsed DC vaccines. Autologous
DC vaccines benefit patients with malignant glioma
but may cause transient and reversible elevation of
serum AST/ALT levels [95].

Peptide modified DC
DC are the most potent professional APCs capable of
engulfing foreign antigens from invading pathogens.
Through activation of pathogen recognition receptors
(PRRs), mature and activated DC via complex
downstream signaling pathways (such as cell surface
co-stimulatory molecules) assemble the antigen
peptide-major histocompatibility complex (MHC) and
promote antigen-specific T cell expansion [96]. In
early phase I trials, activated DC vaccines showed
good safety, but had a weak anti-tumor response,
which was not impressive compared with chemothera-
peutic regimens. The α-type-1 polarized DC activated
by maturation reagents (tumor necrosis factor α, IL
1β, IFN α, IFN γ and polyinosinic acid-polycytidylic
acid) and pulsed with cocktail of 5 synthetic peptides
(WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100)
were well tolerated, except for transient liver

dysfunction. Long-term recurrence-free and positive
immunological responses were only observed in 1.3%
of HLA-A24+ glioma patients with stable disease (SD)
[97]. The valuable target antigens of immunogenic
synthetic peptides that are in existence in tumor lys-
ate still seem to have an advantage to improve the
vaccine-induced benefits and relapse-free period and
optimal combinations need to be developed.

Vaccine generated by tumor cells
Vaccination using autologous tumor cells benefit exist-
ing humoral and cell-mediated immunity to antigenic
epitopes, as well stimulates polyclonal immune attack
against multiple, even undetected, TAAs. In separate re-
ports, preclinical evidence shows that tumor cell im-
munotherapy can enhance anti-glioma immunity and
can be effective in intracranial glioma models [98, 99]
(Fig. 3). Autologous tumor-derived peptides from GBM
can be used to safely immunize patients with recurrent
GBM. After vaccination, brain biopsies revealed signifi-
cant infiltration of focal CD4+, CD8+, CD56+ and IFN γ
producing T cells against autologous tumor-derived pep-
tides bound to HSP-96 [100]. Additionally, the NIH
Clinical Center provided the promising attempt of
administration of tumor lysate vaccine with a potent
immune response modifier, such as imiquimod or poly-
polyinosinic-polycytidilic acid (ICLC) adjuvant, to stimu-
late cell-mediated immune responses (Table 2).
However, even though the feasibility and safety of vac-
cination were noted, the relatively weak anti-tumor ac-
tivity of vaccination with irradiated autologous glioma
has been demonstrated in recent clinical trials.

TAA modified tumor vaccine
Following the observance of the effective anti-tumor
ability of GM-CSF in vitro and in vivo, the US Food and
Drug Administration has approved GM-CSF for use
with dose-intensive chemotherapy. A strategy referred to
as “GVAX”, composed of GM-CSF-engineered irradiated
autologous tumor cells, has demonstrated an immunos-
timulatory effect related to GM-CSF in extensive pre-
clinical results [101]. Using autologous tumor vaccine
plus GM-CSF as an adjuvant, 89% of the vaccinated pa-
tients developed an autologous tumor-associated delayed
type hypersensitivity (DTH) response; 42% of patients
showed radiological evidence of a response, while only
26% patients showed clinical improvement after vaccin-
ation [102]. In a phase I study of recurrent malignant
glioma (N = 10), irradiated autologous glioma cells were
mixed with irradiated K562 cells, which over-expressed
GM-CSF, to strengthen its DTH responses and humoral
immunity. Vaccination revealed activation of T-
lymphocytes, with increasing cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), PD-1, 4-1BB, and OX40
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Fig. 3 Vaccination using autologous tumor cells in anti-glioma clinical trial Vaccines generated by TAA modified tumor cells with GM-CSF or TGF-
β2 induce cellular and humoral anti-tumor immune responses by increasing CD4+ T cells with CTLA4, PD-1, 4-1BB, and OX40 expression and
CD8+ T cells with PD-1 and 4-1BB expression. Using autologous glioma cells and IL-4 gene transfected fibroblasts increases IL-12 p70 level and
infiltration of CD4+ and CD8+ T cells in glioma patients

Table 2 clinical trial of tumor lysate vaccine in glioma

Malignancy Phase Number Study title Identifier Status Interventions Observation

Recurrent glioma I 11 Vaccination with lethally irradiated
glioma cells mixed with GM-K562
cells in patients undergoing
craniotomy for recurrent tumor

NCT00694330 Completed Mixed With
GM-K562 Cells

Toxicity; PFS; OS

Recurrent HGG I/II 14 Phase I/II study to test the safety
and efficacy of TVI-Brain-1 as a
treatment for recurrent grade
IV glioma

NCT01081223 Completed Immune
adjuvant plused,
activated white
blood cells
plused

Toxicity; tumor response;
PFS; OS; immune responses

Recurrent HGG II 86 Study to test the safety and efficacy
of TVI-Brain-1 as a treatment for
recurrent grade IV glioma

NCT01290692 Completed Immune
adjuvant plused,
activated white
blood cells
plused

Toxicity; tumor response;
PFS; OS; immune responses

Recurrent grade
II gliomas

I 19 Imiquimod and tumor lysate
vaccine immunotherapy in adults
with high risk or recurrent grade
II gliomas

NCT01678352 Completed Imiquimod
adjuvant

T-cell responses; toxicity

DIPG I 8 Imiquimod/brain tumor initiating
cell (BTIC) vaccine in brain
stem glioma

NCT01400672 Terminated Imiquimod
adjuvant

Toxicity; tumor response

Newly Diagnosed
GBM

I 1 Derivation of tumor
specific hybridomas

NCT01702792 Terminated NA Toxicity; number of
hybridoma clones;
production of antibodies

Grade II gliomas I 30 Neo-adjuvant evaluation of
glioma lysate vaccines in WHO
grade II glioma

NCT02549833 Recruiting Poly-ICLC
adjuvant

Toxicity; tumor response;
PFS; OS; CD4 + and CD8 +
T-cell responses; expression
of GAAs and APM molecules

HGG high-grade glioma; GBM glioblastoma; NA not applicable; Poly-ICLC polyinosinic-polycytidilic acid; GAA, lioma-associated antigen; APM
antigenpresentation machinery. Data collected from clinicaltrials.gov database
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expressed CD4+ T cells, as well as PD-1 and 4-1BB
expressed CD8+ T cells. No dose-limiting toxicities were
seen when vaccinating patients with subcutaneous and
intradermal injections of irradiated autologous glioma
cells [103]. Transforming growth factor-beta 2 (TGF-β2)
is a secreted protein known as an immunosuppressive
molecule, whose dysregulated signaling contributes to
the initiation and progression of many cancers, including
glioma [104]. Preclinical study demonstrated that inhib-
ition of TGF-β2 expression significantly enhances
tumor-cell immunogenicity in eliminating previously im-
planted tumors [105]. Administration of TGF-β2 modi-
fied tumor cells showed recoverable and low-grade
treatment-related toxicities and may be safe for glioma
patients. In a phase I clinical trial, injection of TGF-β2
antisense-modified autologous tumor vaccine increased
survival in some patients and induced generation of cel-
lular and humoral anti-tumor immune responses in
stage IV astrocytoma [106].
Vaccination-generated Abs may contribute to the

in vivo immunogenicity of selected tumor antigens and
may contribute to the therapeutic efficacy of cellular
vaccines mainly designed to induce/up-regulate a
tumor-specific CTL response. Recently, therapeutic vac-
cines based on genetically modified allogeneic tumor
cells have been evaluated in clinical trial, regarding its
advantage of acceptable construction costs, and the host
of special antigen presenting. Clinical support for an
allogeneic cellular vaccine approach has been validated
in melanoma and has shown the extent of immunization
against selected tumor antigens [107], but such is not
the case in glioma. These findings support the clinical
application of autologous tumor vaccines comprised of
systemic immunosuppression antigens in glioma. Fur-
ther randomized trials with allogeneic tumor cell im-
munotherapy may take a chance to establish efficacy as
an alternative approach.

Fusion of autologous tumor and fibroblast cells
The risk of local recurrence occurs highly at and around
the site of injury after surgical removal of the tumor
[108]. Previous studies demonstrated fibroblasts may be
applicable to cancer-targeting gene therapy for local
control of the tumor around the injured tissue [109].
Using autologous glioma cells and IL-4 gene transfected
fibroblasts, the feasibility and safety of adjuvant vaccina-
tions were evaluated in patients with newly diagnosed
and recurrent GBM, and it demonstrated encouraging
immunological and clinical responses without allergic
encephalitis [110]. In recurrent GBM, IL-4 dose-
dependent infiltration of CD4+ and CD8+ T cells was
observed at local vaccine sites. Vaccinations in HLA-A2+

patients demonstrated systemic T cell responses against
an HLA-A2-restricted GAA epitope, EphA2883-89. In

newly diagnosed GBM, monocyte-derived DC produce
high levels of IL-12 p70 followed by two intradermal
vaccinations with transfected fibroblasts admixed with
DC loaded with autologous tumor lysate. However, de-
tectable IFN γ post-vaccine responses or prolonged
progression-free survival was not observed in these par-
ticipants. To improve the intensity of the vaccine regi-
men, future studies will need to identify the potential
vaccine intensification approach to enhance therapeutic
efficacy without detrimental counterbalancing of
autoimmunity.

Autologous natural killer cell therapy
NK cells are highly efficient in the cellular immune re-
sponse against diseases, including malignancies. The past
several years have seen tremendous advances in the se-
lection and expansion of NK cells, and they have been
used in clinical trials as adaptive immunotherapy for
cancer [111]. Current NK cell-based cancer immuno-
therapy was designed to improve NK cell paralysis using
several approaches, which are more practical for quality
control and large-scale production by using stable au-
tologous NK cell lines, for adoptive cellular immuno-
therapy [112]. In a phase I clinical trial, autologous NK
cell therapy was demonstrated to be safe and partially ef-
fective in patients with recurrent GBM. The NK cell-
rich effecter cells were manufactured from PBMCs
through co-culturing with irradiated human feeder cell
line (HFWT) and IFN β [113]. To a certain degree, au-
tologous NK cell therapy could not yet exhibit their full
cytotoxic capacity in vivo due to MHC class I expression
in cancer patients that suppresses autologous NK cells
[114]. A previous study demonstrated NK cell cytotox-
icity is up-regulated by killer cell immunoglobulin-like
receptors (KIRs), which interact with HLA class I ligands
[115], while this finding was not tested in phase I clinical
trial in human patients with glioma.

Discussion
Among all the therapies that have demonstrated signifi-
cant safety and feasibility for gliomas in clinical trials, in-
cluding radiation, chemotherapy (temozolomide and
PCV [procarbazine, lomustine, vincristine]) and targeted
therapies (bevacizumab) [116], the impact of cellular
vaccine therapies has been most modest in glioma. For
unequivocal clinical benefit, improvements should be
achieved to maximize the vaccine-induced T cells with
optimal amplitude, specificity and effector profile [117].
Combination with immune response modifiers in glioma
promises to boost the true power of cellular vaccines
and potentially offer long-term protection from tumor
recurrence. The cytokine IL-12 is a potent inducer of
anti-tumor activity in a variety of preclinical models
[118]. By inflammation regulation, IL-12 has been
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proven to establish a link between innate and adaptive
immunity that involves different immune effector cells
and cytokines [119]. The inducible expressed IL-12-
armored CART cells have broadened the application of
CART-based immunotherapy and might provide an al-
ternative therapeutic strategy for cancer treatment [120].
For recurrent glioma, results of a phase I trial have re-
vealed IL-12 increased IFN γ and PD-1 with acceptable
tolerability in TILs [121]. Additionally, the U.S. Food
and Drug Administration (FDA) has approved synthetic
immunomodulatory agents, such as resiquimod and imi-
quimod, that act as vaccine adjuvants, enhancing cyto-
kine production and skewing immunity towards a Th1/
cytotoxic response [122, 123]. Targeting tumor-specific
T cells, therapeutic interceptions that inhibit receptors,
including PD1 (pembrolizumab, nivolumab), CTLA4
(ipilimumab, tremelimumab) and LAG3 (BMS-986,016),
have been approved or are in clinical trials for the treat-
ment of various cancer types [124]. In practice, however,
the challenges the BBB poses for glioma therapy and
how these immune response modifiers activate the local
brain tumor immune system and enhance cytolytic ef-
fects should be further discussed in future clinical
models.
So far, there is solid evidence that intrinsic factors

(sex, age and comorbidities) and vaccine-related factors
(adjuvants and vaccination schedule), as well as the im-
mune system (such as innate and adaptive responses),
strongly influence vaccine efficacy [125]. Recent progress
in the molecular subtypes of histologic-based glioma
classification suggests some potential reasons for the in-
distinctive effort of the cellular vaccine. For example,
given the spectrum of aggressive phenotypes, tumor
marker-based classification, such as IDH mutation, 1p/
19q co-deletion, and TERT promoter mutations, predict
favorable prognosis in gliomas [126–128]. In IDH-wild
type GBM, a gene-based signature could be a potential
prognostic biomarker [129]. Thus, based on molecular
markers, educated and advisable vaccine use for a cellu-
lar vaccine may be critical for safety and promotable
anti-tumor effects in glioma treatment. Typical GBM al-
terations, such as IDH mutation, NF1 inactivation, and
CDK4-MARCH9 locus amplification, characterize
tumor-associated immunosuppression [130]. IDH1 mu-
tations caused down-regulation of leukocyte chemotaxis,
resulting in reduced immune infiltrates that may con-
tribute, in part, to differences in the aggressiveness of
mutant type gliomas [131]. The immune features of B7-
H3, an immune checkpoint member found to positively
correlate with the grade of malignancy, may become an
attractive target for IDH-wild type glioma immunother-
apy [132]. These findings encourage researchers to fur-
ther confirm the tumor response of cellular vaccines
based on specific molecular subtypes in the ongoing

larger randomized trials, such as IDH1 R132H-DC vac-
cine (NCT02771301), which may provide the hope to
optimize cellular vaccines in gliomas.
To a large extent, cancers are particularly evolutionary

events owing to their genetic heterogeneity [133, 134].
An understanding of the heterogeneous characteristics
of cancer clones allows us to well address the individual
tumor behavior and therapeutic response [135]. Indeed,
such a framework could also be applied to explore the
patient-specific neoantigens in the course of tumor evo-
lution for successful vaccine immunotherapy. The avail-
ability of neoantigen-based personalized vaccines further
provides a powerful aid to elucidate inter-individual vari-
ability and intra-tumor heterogeneity [136]. In patients
with gliomas, intratumour heterogeneity of IDH1 muta-
tions can be considered as a favorable independent prog-
nostic biomarker. Schumacher and colleague
demonstrated the promising function of IDH1 muta-
tion–specific vaccination for glioma treatment [137]. In
this report, the neopeptides carrying IDH1 R132H p123-
142 mutated region were produced to interact with
transgenic human MHC-II molecules in glioma mouse
model. Peptide vaccination resulted in efficient
mutation-specific antitumor immunity in the mouse
model with IDH1 R132H-mutated gliomas. The syn-
thetic neopeptides encompassing histone 3 variant
H3.3K27M mutation could be recognized by TCR. After
then, TCR-transduced T cells specifically lysed the
H3.3K27M+ glioma cells [138] and prolonged overall
survival in patients with diffuse midline gliomas [139].
In addition, Duperret et al. presented a pre-clinical study
about utilizing nucleic acid vaccine platform to target
tumor multi-neoantigens [140]. These nucleic acid vac-
cines induced predominantly MHC I-restricted, CD8+ T
cell responses and subsequently killed tumor cells. Re-
cently, by used personalized neoantigen-targeting vac-
cines to immunize glioma patients, Keskin et al. found
that neoantigen-based vaccines had the potential to
evoke the neoantigen-specific CD4+ and CD8+ T cell re-
sponses [141]. Therefore, considering the biological im-
portance of neoantigens in cancer immunotherapies
[142], it is reasonable to suppose that the neoantigen-
based therapeutic strategies might have a viable future in
anti-glioma immune responses.
Up to now, the clinical relevance of immune regula-

tion in glioma research and treatment remains de-
bated. However, emerging studies about the
immunological processes participated in glioma
tumorigenesis have yielded a basis for clinical transla-
tion of glioma-associated vaccination strategies. Even
though these immunotherapy strategies have yielded
increasingly good outcomes for glioma patients, chal-
lenges with vaccine-based immunotherapy still inevit-
ably remain. The first conceptual challenge is the
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choice of individualized neoantigen to be targeted and
the accurate status assessment of such targets [143].
As more and more tumor neoantigens have been
identified, the future fields of investigation should
focus on the effective neoepitope dosage without tol-
erization and finding the best neoepitope delivery sys-
tem [144]. In BALB/c mice, using a potent
immunostimulatory adjuvant and delivery system for
neoepitope immunization might be of great benefit to
induce the CD8 + T cells-mediated tumor rejection re-
sponse [145]. The immunosuppression and T-cell ex-
haustion in tumor microenvironment pose additional
engineering challenges. Thus, effective treatment of
solid tumors with vaccines needs to generate the acti-
vated CAR T cells that can function in the immuno-
suppressive tumor microenvironment [146]. Another
apparent limitation is that if used for cancer preven-
tion, vaccines must elicit effective long-term memory
in order to avoid causing autoimmunity [147]. In
addition, immunotherapy should be carefully consid-
ered to be integrated into the existing standard ther-
apies. The immunotherapeutic agents, including
vaccine-based therapies, limited its therapeutic poten-
tial when used alone [148]. Oppositely, the combin-
ation of vaccine therapy with other conventional
methods provides obviously synergistic effects on the
eradication of cancer cells [149]. Overall, with contin-
ued research addressed these limitation, such as clari-
fying immune-cancer interactions and discovering
innovative vaccine targets, we can design novel strat-
egies and technologies to better optimize vaccine-
mediated immunity to further improve the outcomes
for glioma patients.

Conclusions
To date, it is well-known that cellular vaccines can be
considered as a promising therapeutic strategy for gli-
oma patients. Increasing studies have demonstrated
that therapeutic vaccines based on T cells, DC cells,
tumor cells and NK cells are feasible and generally
well tolerated. More importantly, clarifying the func-
tional roles of cellular vaccines in glioma immuno-
therapy may bear potential implications for apparent
therapeutic advantages and clinical benefits. Even so,
in the future, forthcoming investigations are needed
to comprehensively explore their unique characteris-
tics involving in anti-glioma immune responses. The
in-depth understanding of cellular vaccines will con-
tribute to uncover the detailed mechanisms and bio-
logical functions in glioma research and treatment.
Furthermore, in view of the non-negligible roles of
cellular vaccines, more preclinical and clinical trials
can be conducted to focus on their combination with
current treatment regimens.
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