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Zhao-You Tang5

Abstract

Background: Exosomes play crucial roles in regulating the crosstalk between normal and cancer cells in the tumor
microenvironment, and in regulating cancer proliferation, migration and invasion through their cargo molecules.

Methods: We analyzed the pro-invasiveness of exosomal circRNA-100,338 in HCC using the transwell invasion
assay. The co-culture of human umbilical vein endothelial cells (HUVEC) and exosomes derived from HCC cell lines
were used to evaluate the impact of HCC derived exosomes on HUVEC. Nude mice models were used to validate
the findings in vitro. Clinically, quantitative RT-PCR was used to quantify the expression of serum exosomal circRNA-
100,338 in HCC patients at both pre-surgery within one week and post-surgery within three weeks.

Results: We aim to investigate the pro-invasive role of exosomal circRNA-100,338 in HCC metastasis. We for the first
time demonstrated that circRNA-100,338 was highly expressed in both highly metastatic HCC cells and their
secreted exosomes. The transwell invasion assay showed that the overexpression or knockdown of exosomal
circRNA-100,338 significantly enhanced or reduced the invasive abilities of HCC cells. Subsequently, in vitro and
in vivo assays showed that exosomal circRNA-100,338 affected the cell proliferation, angiogenesis, permeability, and
vasculogenic mimicry (VM) formation ability of human umbilical vein endothelial cells (HUVEC), and tumor
metastasis. Furthermore, we also observed that the persistent high expression of exosomal circRNA-100,338 in
serum of HCC patients who underwent curative hepatectomy may be a risk indicator of pulmonary metastasis and
poor survival.

Conclusions: Our findings indicated that metastatic ability of HCC cells could be enhanced by transferring
exosomal circRNA-100,338 to recipient HUVECs, which could affect proangiogenic activity by regulating
angiogenesis.
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Background
Hepatocellular carcinoma (HCC) is the leading cause of
cancer mortalities worldwide [1]. Over the past decades,
a number of studies had been conducted to explore the
molecular mechanisms underlying the pathogenesis of
HCC and they have revealed that gene mutations, epi-
genetic alterations, and dysregulation of coding or non-

coding genes were involved in regulating HCC progres-
sion. However, the morbidity and mortality of HCC were
still high. Widespread metastases remain to be a major
challenge for HCC therapy and contributed to the poor
prognosis of HCC [2, 3]. Therefore, identifying novel
regulators related to HCC tumorigenesis, progression
and metastasis is still an urgent need.
Circular RNAs (circRNAs) are a type of naturally oc-

curring RNAs which are synthesized by “head to tail”
splicing of coding or non-coding RNAs (ncRNAs) [4].
circRNAs were identified to be important regulators in
human cancers. In HCC, we, together with other
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research teams [5–7], have identified that a series of cir-
cRNAs were dysregulated in cancer samples and associ-
ated with tumor progression, which may serve as
promising biomarkers for cancer. CircRNAs are involved
in regulating multiple cancer-related biological processes
and pathways, including cell growth [8], metastasis [9],
and apoptosis [10]. For example, circRNA cSMARCA5
can suppress cell metastasis by binding to miR-17-3p to
promote TIMP3 expression in HCC [11]. Circ-CDYL in-
teracts with HDGF and HIF1AN to regulate HCC stem-
ness and growth [6]. We previously identified a series of
dysregulated circRNAs in HCC and focused on examin-
ing the roles of circRNA-100,338 in HCC [5, 12]. We
have demonstrated that circRNA-100,338 is overex-
pressed and associated with mTOR signaling pathway
[5] and poor prognosis [12] in HCC. Of note, circRNAs
can be detected in blood and urine samples of patients,
suggesting that circRNAs may be a type of non-invasive
markers for human cancer diagnosis [4]. However, the
molecular functions and prognostic value of circRNA-
100,338 remains to be further investigated.
Exosomes, a type of extracellular vesicles (30–100 nm),

were released from living cells and could be transported
to adjacent cells or distant cells [13]. Emerging studies
had demonstrated that exosomes played a crucial role in
regulating the tumor-normal communication in the
tumor microenvironment and thus were involved in
regulating multiple cancer-related biological processes,
such as cell proliferation, angiogenesis and metastasis
[14, 15]. Recently, exosome-mediated transfer of cir-
cRNAs is revealed to be a novel mechanism in cancer
progression. For instance, Zhang et al. have reported
that exosomal circRNAs derived from gastric tumor pro-
motes white adipose browning by targeting the miR-
133/PRDM16 pathway [16].
This present study for the first time revealed that exo-

somal circRNA-100,338 was excessively expressed in
highly metastatic HCC cells compared with low meta-
static HCC cells. Exosomal circRNA-100,338 enhanced
the metastatic ability of HCC cells and stimulated angio-
genesis of human umbilical vein endothelial cells
(HUVECs). Moreover, we provided clinical evidence that
exosomal circRNA-100,338 could be a potential bio-
marker for HCC. This study provided a novel mecha-
nisms focusing on exosomal circRNA-100,338 to explain
the crosstalk between HCC cells and endothelial cells,
which promoted angiogenesis and cancer metastasis.

Material and methods
HCC cell line and cell culture
The HCC cell lines were cultured following procedures
stated in our previous reports [5, 12]. Briefly, the nonin-
vasive human liver cell line of L02 (normal), human
HCC cell lines of Hep3B with low invasiveness, and

highly invasive HLE, Huh7, BEL7402, SMCC7721,
MHCC97L, MHCC97H, HCCLM3 and HCCLM6 were
prepared in this study, which were widely used in previ-
ous studies [17, 18]. HUVECs were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA, USA) and grown in RPMI-1640 medium (Gibco-
BRL, Gaithersburg, MD, USA) supplemented with 10%
fetal bovine serum (HyClone, Logan, UT, USA) in a
humidified incubator containing 5% CO2 at 37 °C. In all
experiments, cells were treated without antibiotics.

Patients, clinical specimens and follow-up
Informed consent was obtained from each patient, and
the Research Ethics Committee of Hospital approved all
aspects of this study. The inclusion criteria for 39 pa-
tients in this study were (a) patients with hepatitis B
from 2016 to 2019; (b) pathologically proven HCC based
on WHO criteria; (c) no anticancer treatment prior to
hepatectomy and 3 weeks post-operation; (d) exosomes
from patient with HCC were used after quality control;
(e) availability of frozen biopsy and/or resected lung
metastatic HCC tissues; and (f) availability of follow-up
data. HCC patients with hepatectomy were followed up
every 3 months until June 2019 by monitoring serum
AFP levels, abdominal ultrasonography, chest X-ray or
computed tomography depending on the patient’s condi-
tion. HCC tissues, lung metastatic nodules or pulmonary
puncture specimens, plasma exosomes were obtained
from the Hospital Clinic for further examination. Gen-
eral data, metastatic characteristics, pathologic charac-
teristics and survival were compared among the groups.

Cell proliferation assay
The cell proliferation assay was conducted using MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay according to previous studies [5, 12].
The results were read on a multiwell scanning spectro-
photometer. The absorbance values were measured at a
wavelength of 450 nm (with a reference of 630 nm).

Immunohistochemistry (IHC)
IHC was performed as previously described [5, 12]. Pri-
mary antibodies (Santa Cruz, diluted 1:100) of CK, TTF-
1, Napsin A, Hep Par-1, Villin and Glyp-3 were prepared
for lung metastases confirmation, according to the man-
ufacturer’s instructions. A positive reaction of IHC was
indicated by a reddish-brown precipitate in the nucleus
and cytoplasm. Primary antibodies were replaced by PBS
for negative controls. Microvessel density (MVD, using
CD34 immunostaining) was counted [19]. Staining for
Ki67 tissue expression was performed using the primary
anti-Ki67 antibody (1:50, Tokyo, Japan). The Ki67 was
calculated for each sample as the percentage of positively
stained tumor cells among all counted tumor cells [20].
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All slides were independently assessed by two board-
certified pathologists who were blinded to the experi-
ment. Any difference in the analysis was resolved by
consensus.

Isolation of exosomes from medium and plasma
The present study isolated exosomes in medium accord-
ing to previous reports [21]. Briefly, the collected
medium was centrifuged at 300 g for 10 min at 4 degree
to remove the cell pellet. Then, the supernatant was cen-
trifuged at 2000 g for 10 min at 4 degree to remove the
dead cells. Then, the supernatant was centrifuged at
10000 g for 10 min at 4 degree to remove the cell debris.
Finally, the supernatant was centrifuged at 110000 g for
2 h at 4 degree to obtain a precipitate which was an iso-
lated exosomes. Exosomes were then re-suspended in
pre-cooled PBS. The present study used a ZetaView par-
ticle tracker (ParticleMetrix, Germany) to detect the
concentration and size of exosomes.

Transmission electron microscopy assay
Transmission electron microscopy assay was conducted
according to a previous report [22]. Briefly, the exosome
pellets were suspended in PBS, fixed with 4% parafor-
maldehyde and applied to a Formvar/carbon film-coated
transmission electron microscope grid (Alliance Biosys-
tems, Inc., Osaka, Japan). Subsequently, samples were
fixed by incubation with 1% glutaraldehyde, contrasted
with 1% uranyl acetate, embedded and polymerized in
epoxy resin, subsequently observed under a Hitachi H-
7650 transmission electron microscope (Hitachi, Ltd.,
Tokyo, Japan).

Transfection
We knocked down [5] and overexpressed [12] circRNA-
100,338 in HCC cell lines according to our previous
reports.

RNA isolation and quantitative RT-PCR
RNA isolation and quantitative RT-PCR were conducted
according to our previous reports [5, 12]. Primers of
hsa_circRNA-100,338 and GAPDH were as follows:
GAPDH_F: 5′-GGGAAACTGTGGCGTGAT-3′, GAPD
H_R: 5′-GAGTGGGTGTCGCTGTTGA-3′, circRNA-
100,338_F:5′-AAAAGCAAGCAGTGCCCATA-3′, circR
NA-100,338_R:5′-GCTCGAATCAGGTCCACCA-3′.

Western blotting
Western blotting was conducted to detect the protein
levels of CD63 (1:1000, SBI), CD81 (1:1000, Proteintech),
CD9 (1:500, Proteintech) and GAPDH (1:1000, Protein-
tech) according to our previous reports [5, 12].

Mice grouping and treatment
Male athymic BALB/c nu/nu mice of 18–20 g at 5 weeks’
age were obtained from the Shanghai Institute of Mate-
ria Medica, Chinese Academy of Science. All mice were
handled according to the recommendations of the Na-
tional Institutes of Health Guidelines for Care and Use
of Laboratory Animals. The experimental protocol was
approved by the Shanghai Medical Experimental Animal
Care Committee. Human HCC tumor models produced
by MHCC97H were established in nude mice by ortho-
topic inoculation, as described in our previous publica-
tions [23–25]. Briefly, the left lobe of the liver was
exposed under anesthesia, and part of the liver surface
was mechanically injured with scissors. A piece of
MHCC97H tumor tissue (size 2 × 2 × 2mm) was fixed
within the liver tissue. Therapy started on day 1 after
HCC tissues implantation. Sixty nude mice randomized
into 4 groups were used in this study:
siNC-exo group (n = 15): Each mouse received intra-

venous injection of 100 μL exosomes (1 μg/μL, exosomes
derived from MHCC97H cells of control group) into
caudal vein once a week and was injected subcutane-
ously with sterile saline water (NS, 100 μL) daily.
siCIRC-exo group (n = 15): Each mouse received intra-

venous injection of 100 μL exosomes (1 μg/μL, exosomes
derived from MHCC97H cells of siCIRC group) into
caudal vein once a week and was injected subcutane-
ously with sterile saline water (NS, 100 μL) daily.
siNC-exo + IFN-alpha group (n = 15): Each mouse re-

ceived intravenous injection of 100 μL exosomes (1 μg/
μL, exosomes derived from MHCC97H cells of control
group) into caudal vein once a week and was injected
subcutaneously with 100 μL of IFN-alpha (IFNα, 7.5 ×
106 U/kg/d/mouse) daily [26].
siCIRC-exo + IFN-alpha group (n = 15): Each mouse

received intravenous injection of 100 μL exosomes (1 μg/
μL, exosomes derived from MHCC97H cells of siCIRC
group) into caudal vein once a week and was injected
subcutaneously with 100 μL of IFN-alpha (IFNα, 7.5 ×
106 U/kg/d/mouse) daily.
Five weeks later, 5 mice randomly selected from each

group were humanely killed by cervical dislocation 48 h
after the final treatment. The remaining 10 mice of each
group were maintained on the designated therapies until
death to determine their lifespan. Samples were collected
to detect exosomal circRNA-100,338, lung metastases,
MVD, Ki67 and MMP9 protein levels. Tumor volume
was estimated by the formula V = π/6 × a2 × b, where a
was the short and b was the long tumor axis.

Hematoxylin and eosin (H&E)
Hematoxylin and eosin stains were conducted according
to our previous reports [27].

Huang et al. Journal of Experimental & Clinical Cancer Research           (2020) 39:20 Page 3 of 16



The enzyme-linked immunosorbent assay (ELISA) for
MMP9
The levels of the MMP9 were measured using ELISA
kits from R&D (MN, USA) according to the manufac-
turer’s instructions. The assays were conducted in
triplicate.

Gelatin zymography for MMP9 and MMP2
Gelatin zymography for MMP9 and MMP2 were per-
formed as previously described [28, 29] with modifica-
tions. Briefly, 30 μg of protein were loaded in 8%
polyacrylamide gels co-polymerized with 0.1% gelatin
(Merck™) acting as the substrate for the enzymes. After
electrophoresis, the gels were washed twice in 2.5% Tri-
ton X-100 to remove sodium dodecyl sulfate and further
washed in 50 mM Tris-HCl pH 8.0. Gels were incubated
for the following 20 h in an activation buffer (50 mM
Tris-HCl supplemented with 5 mM CaCl2). Gels were
stained with Coomassie brilliant blue R-250 and de-
stained with 20% methanol and 10% acetic acid in dis-
tilled water until the clear bands had been visualized.
MMP activity was determined by densitometry using
Quantity One 1-D Analysis Software (Bio-Rad Labora-
tories, CA, USA).

Transendothelial invasion assay
Transendothelial invasion assay was performed to detect
the GFP-expressing hepatoma cells that invaded through
HUVEC monolayers without or with exosome treatment
according to a previous report [30].

Tube formation assay
Tube formation assay was performed to assess the effect
of exosomal circRNA-100,338 on angiogenesis. Growth
factor-reduced Matrigel (BD Biosciences, San Jose, CA,
USA) was placed in 48-well plates. HUVECs were first
incubated with serum-free medium for 12 h and then
transferred onto the 48-well plates precoated with
Matrigel. After incubation for 10 h, tube formation was
examined in photographs taken under a microscope.
The total tube length was determined by measuring the
branches of blood vessels using ImageJ software.

Exosome labelling and tracking
Exosome labelling and tracking was conducted accord-
ing to a previous report [31]. Red dye PKH26 kit
(Sigma-Aldrich, USA) was used to track exosomes ac-
cording to the manufacturer’s protocol. The labelled
exosomes were added to HUVECs and incubated for 6 h.

Pulldown assay and mass spectrometry
RNA pulldown and mass spectrometry were performed
as described before [32]. Precipitated components were
separated using SDS-PAGE, followed by silver staining

[33]. Differential bands were cut for mass spectrometry.
Each assay was performed in triplicate.

In vitro endothelial permeability assay
The in vitro endothelial permeability was assessed by
quantifying the amount of rhodamine B isothiocyanate
dextran (rhodamine-dextran, average MW= 70,000;
Sigma-Aldrich) that passed through the endothelial
monolayers without or with exosome treatment. The
primes for circRNA_100,338-P and circRNA_N-P were
CTCAACATTCACGTGGTTCCACAAACTTCTCACC
ATTCTGCT and AAAAAAAAAAAAAAAAAAAAAA
AAA, respectively.

Statistical analysis
All experiments were performed in triplicate, and the re-
sults are presented as the mean value ± standard devi-
ation. The data were statistically analyzed using ANOVA.
Student’s t-test in SPSS statistical software, with P < 0.05
considered statistically significant. * indicates P < 0.05; **
indicates P < 0.01 and *** indicates P < 0.001.

Results
Characterization of exosomes derived from HCC cell lines
With the validated circular structure and resistance di-
gestion of circRNA-100,338 (See Additional file 1), we
focused on exploring the exosome-based mechanisms
underlying the metastasis and progression of HCC. To
demonstrate the universal expression of circRNA-100,
338 in HCC cell lines, we selected normal liver cell line
L02, AFP-positive, AFP-negative, highly metastatic po-
tential and lowly metastatic potential HCC cell lines, in-
cluding HLE, Huh7, Hep3B, BEL7402, SMMC7721,
MHCC97L, MHCC97H, HCCLM3, and HCCLM6. Par-
ticularly, HLE and Huh7 were AFP-negative cell lines,
while the remaining were AFP-positive. The exosomes
were isolated and characterized from two representative
HCC cell lines, Hep3B and MHCC97H cells, from the
nine HBV-positive HCC cell lines with varied metastatic
potentials. Notably, MHCC97H and Hep3B were charac-
terized as relatively high and low metastatic potential, in
which, the circRNA-100,338 was highly and lowly
expressed, respectively [12]. Transmission electron mi-
croscopy analysis revealed that exosomes derived from
both cell lines showed a round-shaped appearance
(Fig. 1a). The nanoparticle tracking analysis (NTA)
showed that the size of these exosomes came from a
similar distribution with the peak size range about 80–
135 nm (Fig. 1b). Western blot analysis confirmed the
presence of CD63, CD81, and CD9, which were reported
as exosomal markers [34] (Fig. 1c). These results showed
the exosomes were successfully isolated from Hep3B
and MHCC97H cell lines.
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Given that tumor-derived exosomes had been reported
to regulate cancer metastasis [35], we hypothesized that
exosomes derived from high-metastatic HCC cells might
enhance invasiveness of lowly metastatic HCCs. Transwell
invasion assay showed that Hep3B cells co-cultured with
exosomes derived from MHCC97H cells had higher inva-
sion than the Hep3B cells without MHCC97H exosomes
co-incubation (Fig. 1d-e, Additional file 2). Accordingly,
more invaded HCC cells were observed in Hep3B cells co-
cultured with MHCC97H exosomes (Fig. 1e, P < 0.001,
Additional file 2). The enhanced invasive ability by
MHCC97H exosomes in Hep3B gave us a hint that exo-
somes played a regulatory role in HCC metastasis.

High expression of exosomal circRNA-100,338 affects
invasive ability of HCC
As shown in Fig. 2a, both intracellular and exosomal
circRNA-100,338 levels were higher in the metastatic
MHCC97H than those in Hep3B (Additional file 3).
Meanwhile, the present study also showed that exosomal
circRNA-100,338 was positively associated with the
metastatic ability of HCC (Fig. 2b, Additional file 3). The

exosomal circRNA-100,338 was observed to be signifi-
cantly more abundant in highly metastatic HCCLM6,
HCCLM3, and MHCC97H cells than that in lowly meta-
static Huh7 and HLE cells and normal liver cell line, L02
(Fig. 2b). These results showed that circRNA-100,338
could be transferred by exosomes, and suggested that
exosomal circRNA-100,338 played a potential regulatory
role in HCC metastasis.
In order to determine the pro-invasive role of exoso-

mal circRNA-100,338, we assessed the effect of exoso-
mal circRNA-100,338 on the HCC invasiveness using
transwell invasion assay. With the successful knockdown
or overexpression of exosomal circRNA-100,338 in
MHCC97H, the exosomes derived from circRNA-100,
338 overexpressing MHCC97H cells promoted the inva-
sive ability of MHCC97L, SMMC7721, BEL7402, Hep3B,
Huh7, and HLE by 14.6, 13.9, 15.9, 18.1, 18.5, and 19.6%
(Fig. 2c, Additional file 3), respectively. In contrast, exo-
somes derived from circRNA-100,338 knockdown
MHCC97H cells significantly decreased the invasive
ability of MHCC97L, SMMC7721, BEL7402, Hep3B,
Huh7, and HLE by 22.3, 22.8, 23.9, 51.5, 30.4, and 36.4%,
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Fig. 2 High expression of exosomal circRNA-100,338 affects HCC cell invasion. a qRT-PCR analysis of circRNA-100,338 expression in HCC cells
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overexpressing (CIRC-exo) or knockdown (siCIRC) MHCC97H cells significantly increased (f) or decreased (g) the expression levels of MMP9 in
MHCC97L, SMMC7721, BEL7402, Hep3B, Huh7, and HLE cells. Significance was defined as P < .05 (*P < .05; **P < .01; ***P < .001)
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respectively (Fig. 2d, Additional file 3). In addition, since
matrix metalloproteinases (MMP), such as MMP2 and
MMP9, played crucial roles in promoting metastasis of
HCC [36], Gelatin zymography assay for these two pro-
teins showed the activities of MMP9, not MMP2, in
Hep3B were increased after samples were treated with
the exosomes derived from MHCC97H, which had in-
creased invasive potential (Fig. 2e). ELISA assay showed
that exosomes derived from circRNA-100,338 overex-
pressing or knockdown MHCC97H cells significantly in-
creased or decreased the expression levels of MMP9 in
MHCC97L, SMMC7721, BEL7402, Hep3B, Huh7 and
HLE cells (Fig. 2f-g, Additional file 3).

Exosomal circRNA-100,338 regulates HUVEC cell
proliferation, angiogenesis, and permeability
To investigate the function of exosomal circRNA-100,
338, we exposed HUVEC cells to exosomes isolated
from Hep3B and MHCC97H cells. As shown in Fig. 3a,
fluorescence microscopy assay revealed that HUVECs
cells exhibited the uptake of exosomes derived from
Hep3B and MHCC97H in the cytoplasm, which were la-
beled with a red fluorescent dye, PKH26 (Fig. 3a-b). The
expression of circRNA-100,338 in HUVEC cells co-
cultured with exosomes derived from circRNA-100,338
knockdown MHCC97H cells was significantly lower
than that in HUVEC cells co-cultured with controls. In
contrast, circRNA-100,338 was significantly upregulated
in HUVEC cells co-cultured with exosomes derived from
circRNA-100,338 overexpressing Hep3B cells than the
controls (Fig. 3c, Additional file 4).
With the significant upregulation or downregulation of

circRNA-100,338 in HCC cells, exosomes derived from
circRNA-100,338 knockdown MHCC97H cells signifi-
cantly suppressed the HUVEC cell proliferation after 48 h
co-culture (Fig. 3d, Additional file 4). However, exosomes
derived from circRNA-100,338 overexpressing Hep3B
cells significantly promoted the proliferation of HUVEC
cells after 48 h (Fig. 3e, Additional file 4), as compared
with their corresponding controls, respectively.
Furthermore, we observed that incubation of conditioned

mediums collected from circRNA-100,338 knockdown
MHCC97H cells or circRNA-100,338 overexpressing
Hep3B cells with HUVEC cells could suppress or enhance
the tube formation of HUVEC as compared with their cor-
responding negative control samples (Fig. 3f). These results
suggested that exosomal circRNA-100,338 could promote
the HUVEC angiogenesis.
Next, transwell assay was performed to assess the im-

pact of exosomal circRNA-100,338 on HCC cell migra-
tion. HUVEC cells were first exposed to exosomes
derived from circRNA-100,338 knockdown MHCC97H
cells or circRNA-100,338 overexpressing Hep3B cells.
The migration of MHCC97H was then tested on the

monolayer of HUVEC cells pre-treated by exosomes
derived from HCCs. The results showed that exosomes
derived from circRNA-100,338 knockdown or overex-
pressing HCC cell lines significantly suppressed or en-
hanced the migratory ability of HCC cells (Fig. 3g-h,
Additional file 4, Additional file 5). Moreover, the per-
meation rate of the HCC cells across the HUVEC cells
was significantly decreased in circRNA-100,338 knock-
down MHCC97H cells, while it was significantly in-
creased in circRNA-100,338 overexpressing Hep3B cells,
when compared with control groups (P < 0.05, Fig. 3i,
Additional file 4). In addition, we also detected the
proliferation of HUVEC blank control (HUVEC-BC) and
the invaded tumor cells in HUVEC-BC group. Con-
sistently, the proliferation and invasion rates were
significantly lower in HUVEC-BC than the HUVECs
co-cultured with exosomes (P < 0.05), suggesting that
the exosomal circRNA-100,338 could regulate HUVEC
cell proliferation, angiogenesis, and permeability.

Exosomal circRNA-100,338 regulates VM formation by
regulating VE-cadherin
The tight junction protein ZO-1 is often used as an indi-
cator to observe the tight junctional barrier function and
permeability of various tissues, and its expression in can-
cer tissues is lower than that in normal tissues [37]. Vas-
cular endothelial cell cadherin (VE-cadherin) is a key
molecule of adhesion junctions between vascular endo-
thelial cells (EC), and its structural and functional abnor-
malities lead to dissociation of EC adhesion junctions
[38]. In order to further evaluate whether exosomal
circRNA-100,338 was involved in regulating vasculo-
genic mimicry (VM) formation in vitro, we first overex-
pressed and knocked down circRNA-100,338 in Hep3B
and MHCC97H cells, respectively, and then collected
and incubated their secreted exosomes with HUVECs.
Compared with exosomes derived from control Hep3B
and circRNA-100,338 knockdown MHCC97H cells,
those derived from circRNA-100,338 overexpressing
Hep3B and control MHCC97H cells had lower protein
expression of VE-Cadherin and ZO-1 in HUEVC cells
(Fig. 4a-b, Additional file 5), respectively, suggesting that
exosomal circRNA-100,338 could disrupt the tight junc-
tions between HUEVC cells, thus promoting vascular
endothelial cell permeability.

Exosome-delivered circRNA-100,338 significantly
promoted HCC progression in vivo
We further examined the possibility of exosome-
delivered circRNA-100,338 being involved in HCC pro-
gression in vivo. We found that the siNC-exo group had
the highest expression of exosomal circRNA-100,338 in
the serum, followed by groups of siCIRC-exo, siNC-
exo + IFN-alpha, and siCIRC-IFN-alpha (P < 0.001,
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Fig. 5a, Additional file 6). Interestingly, we found that
knockdown of exosomal circRNA-100,338 could signifi-
cantly suppress tumor growth (Fig. 5b-c), microvessel
density (Fig. 5d), MMP9 expression levels (Fig. 5e), and

reduce the number of lung metastatic nodules (Fig. 5f)
and the positive rate of Ki67 in lung metastatic nodules
(Fig. 5g) of the nude mice models (Additional file 6).
Previous study had demonstrated that IFN-alpha
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inhibited angiogenesis and progression of HCC [39].
Consistently, this study also observed that knockdown of
circRNA-100,338 combined with IFN-alpha played a
synergistic role in reversing exosome mediated tumor
progression. In vivo, circRNA-100,338 knockdown

markedly prolonged animal survivals when compared
with control group, meanwhile, circRNA-100,338 knock-
down combined with IFN-alpha had a stronger effect on
prolonging animal survivals than treating the mouse
with IFN-alpha alone (Fig. 5h). The results showed that
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circRNA-100,338 knockdown combined with IFN-alpha
had a stronger suppressive effect on HCC growth.

The potential effect of internalized exosomal circRNA-
100,338 on angiogenesis in HUVEC
In order to explore the molecular mechanism of
circRNA-100,338, we transfected HUVEC cells with bio-
tin labeled circRNA-100,338 probe and negative control
probe respectively and carried out RNA pull down assay.
Results of sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) protein electrophoresis
showed that circRNA-100,338 specifically binds four
bands, but the control probe cannot bind these proteins.
We excised the differential bands for mass spectrometry
and detected 661 proteins (Additional file 7, Additional
file 8). Interestingly, circRNA-100,338 can bind 14 RNA
binding proteins including FUS, IF2B1, IF2B3, IF2B2,
NOVA2, RBM39, RBM14, PAIRB, EWS, NOVA1,
RBM26, RBM27, RBM10 and RBM15, five transcription
factors including T2FA, HLTF, GTF2I, T2EA and
BCLF1, and one mRNA decapping enzyme DCP1A. In
addition, circRNA-100,338 may bind to tumor suppres-
sor molecule of p53, histone modifying proteins includ-
ing HDAC1, HDAC2 and HPF1. Particularly, NOVA2, a
RNA binding protein regulating the RNA post-
transcriptional modification, was reported to regulate
vascular development and lumen formation [40], giving
us a hint that the internalized exosomal circRNA-100,
338 might regulate the angiogenesis by interacting with
NOVA2.

Serum exosomal circRNA-100,338 can predict lung
metastasis of HCC patients following curative
hepatectomy
To determine whether exosomal circRNA-100,338 can
be detected in the circulation, we tested its expression
levels in serum of 39 HCC patients, where 13 cases were
found to exhibit pulmonary metastasis during follow-up.
The lung metastatic nodules were confirmed by patho-
logical examination (Fig. 6a). The expression levels of
exosomal circRNA-100,338 were detected in the serum
at both one week before the surgery and three weeks
after the surgery, during which, the patients did not re-
ceive any other anti-tumor treatments. The ratio of its
pre-operation expression to post-operation expression
was used as a prognostic indicator for HCC. The 39
HCC patients were stratified into two groups ((Post/
Pre)increase vs. (Post/Pre)decrease, representing the samples
with ratio ≥ 1 or < 1, respectively). Consistently, higher
rate of pulmonary metastasis was observed in (Post/Pre)-
increase group (10/16, 62.5%) than that in (Post/Pre)decrease

group (3/23, 13.0%, proportion test, P = 0.004, Table 1),
however, AFP levels of these two groups did not have
significant difference (P > 0.05) at both pre-surgery and

post-surgery points, suggesting that the ratio of Post/Pre
was a risk indicator of pulmonary metastasis superior to
AFP at the early stage of HCC after curative hepatec-
tomy. Survival analysis of these two groups revealed that
patients in (Post/Pre)decrease group exhibited longer over-
all survival than that in (Post/Pre)increase group (Fig. 6b,
P = 0.007, 3-year-survival: 18/23 vs. 7/16). Moreover,
other prognostic indicators such as TNM stage and vas-
cular invasion were also associated with circRNA-100,
338 expression ratio (Table 1).
To further investigate the association of exosomal

circRNA-100,338 in serum with MVD and Ki-67 expres-
sion of both HCC primary and pulmonary metastatic tis-
sues, we classified the 13 patients with pulmonary
metastasis into high ratio ((Post/Pre)high, n = 8) and low
ratio ((Post/Pre)low, n = 5) groups with the threshold at 1.2
(mean of the ratios). We detected MVD and Ki-67 expres-
sion in the primary HCC tissues and lung metastatic tis-
sues from the 13 HCC patients with pulmonary metastasis
using IHC. The (Post/Pre)high group had higher MVD and
Ki-67 expression than the (Post/Pre)low group in both
primary HCC tissues and pulmonary metastatic tissues
(P < 0.001, Fig. 6c and d, Additional file 9). These results
further indicated that high expression of exosomal
circRNA-100,338 in serum may be associated with en-
hanced proliferation and angiogenesis in primary and sec-
ondary HCC tissues, and poor prognosis.

Discussion
The crucial roles of circRNAs in human cancers had
been implied by emerging studies [41, 42]. Exosomes
can regulate the crosstalk between normal and cancer
cells in the tumor microenvironment, cancer prolifera-
tion, migration and invasion through their cargo mole-
cules [43–45]. Most recently, exosomal circRNA have
attracted increasing interest. For example, exosomal
circRNA_100284 promoted liver cancer cell cycle and
proliferation through microRNA-217/EZH2 axis [22].
Exosomal circPTGR1 enhanced cancer metastasis in
HCC [46]. Exosomal ciRS-133 derived from gastric
tumor could sponge miR-133 to promote white adipose
browning [16]. CircRNA-100,338 is a novel circRNAs re-
lated to the cancer progression. Our previous studies
have demonstrated that circRNA-100,338 is overex-
pressed and associated with mTOR signaling pathway
and poor prognosis in HCC [5, 12]. However, the mo-
lecular functions of circRNA-100,338 in HCC need to be
further investigated. The present study revealed that
exosomes derived from high metastatic HCC cells could
enhance HCC cell migration, suggesting that exosomes
play a regulatory role in HCC metastasis. We then for
the first time showed that circRNA-100,338 was highly
expressed in both metastatic HCC cells and their se-
creted exosomes. The transwell invasion assay showed
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that the overexpression or knockdown of exosomal
circRNA-100,338 significantly enhanced or reduced the
invasive abilities of HCC cells. Subsequently, our results
showed that exosomal circRNA-100,338 affected the cell
proliferation, angiogenesis, permeability and VM forma-
tion ability of HUVECs. Taken together, these findings

indicated that metastatic ability of HCC cells could be
enhanced by transferring exosomal circRNA-100,338 to
recipient HUVECs via increasing proangiogenic activity.
Emerging studies have demonstrated that angiogenesis

played a critical role in the regulation of cancer metasta-
sis [47]. In tumor microenvironment, the endothelial
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cells and cancer cells can communicate with each other
through exosomes, which regulates the angiogenesis and
cancel cell progression [48]. We next explored whether
HCC derived exosomes and the exosomal circRNA-100,
338 were involved in the communication between
HUVECs and HCC cells. The results showed that exo-
somes derived from MHCC97H cells with high meta-
static potential had a higher expression of circRNA-100,
338 compared with that in Hep3B cells, suggesting that
exosomal circRNA-100,338 was involved in regulating

HCC metastasis. Furthermore, our results showed that
exosomal circRNA-100,338 could significantly promoted
HCC cell invasion ability. Moreover, we used exosomes
from circRNA-100,338 overexpressing or knockdown
HCC cells to treat HUVECs and found that these exo-
somes could induce or reduce HUVECs cell prolifera-
tion, angiogenesis, permeability and VM formation.
Finally, we transfected HUVEC cells with biotin labeled
circRNA-100,338 probe and negative control probe
respectively and carried out RNA pull down assay.

Table 1 Correlation of clinicopathological parameters with the alteration of circRNA_100,338 relative expression level in serum
exosomes from HCC patients

Clinicopathological
parameters

n CircRNA_100,338 alteration in serum exosomes P

(Post/Pre)decrease group (Post/Pre)increase group

(< 1.0, n = 23) (≥ 1.0, n = 16)

Age 39 0.688

< 58 y 18 10 8

≥ 58y 21 13 8

Gender 39 0.862

Female 14 8 6

Male 25 15 10

Viral hepatitis 39 1.000

Type B 37 22 15

Type B and C 2 1 1

Cirrhosis 39 0.677

Yes 33 19 14

No 6 4 2

AFP level 39 0.939

< 20 ng/mL 10 6 4

≥ 20 ng/mL 29 17 12

Satellite 39 0.018

Yes 18 7 11

No 21 16 5

TNM stage 39 0.022

I-II 19 15 4

III-IVA 20 8 12

Vascular invasion 39 0.023

Yes 16 6 10

No 23 17 6

γ-Glutamyl transferase 39 0.522

< 51 units/L 17 11 6

≥ 51 units/L 22 12 10

Lung metastasis# 39 0.004

Yes 13 3 10

No 26 20 6

NOTE: HCC, hepatocellular carcinoma; Post/Pre: the ratio of exosomal circRNA-100,338 in HCC serum between one week pre-operation and three weeks post-
operation. Significant difference: P < 0.05
#Lung metastasis was found during follow-up
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Particularly, NOVA2, a RNA binding protein regulating
the RNA post-transcriptional modification, was reported
to regulate vascular development and lumen formation
[40], giving us a hint that the internalized exosomal
circRNA-100,338 might regulate the angiogenesis by
interacting with NOVA2. The in vivo assays further
validated our findings that exosomal circRNA-100,338
promoted HCC metastasis through regulating angiogen-
esis. These results improved our understanding that
exosome-enriched circRNAs were also involved in regu-
lating cancer metastasis.
Alpha-fetoprotein (AFP) is the most widely used

marker for HCC diagnosis, and the sensitivity of AFP
is as low as about 60% for HCC diagnosis [49]. Spe-
cifically, only one of the 13 HCC patients with pul-
monary metastasis in this study showed positive AFP
within 3 weeks of post-surgery, suggesting that AFP
was not sensitive enough to predict the pulmonary
metastasis of HCC at the early stage following cura-
tive hepatectomy. There is still an urgent need to
identify novel biomarkers for HCC. CircRNAs were a
type of highly tissue-specific and spatiotemporal-
specific molecules, and were reported to be potential
biomarkers for multiple human cancers, including
HCC [50]. For instance, hsa_circ_0091579 was signifi-
cantly upregulated in tumor samples and related to
poorer prognosis of HCC patients [51]. A recent
study showed that the hsa_circ _00520 was associated
with relapse-free survival and exhibited relatively high
sensitivities and specificities compared with AFP [52].
Notably, circRNAs had been proved to be a type of
non-invasive diagnosis markers for human cancers.
The present study for the first time showed that exo-
somal circRNA-100,338 also have the potential prog-
nostic and diagnostic value in HCC. The exosomal
circRNA-100,338, the number of MVD, and percent-
age of positive Ki67 were higher in HCC patients
with pulmonary metastasis compared to non-
metastatic HCC samples. Moreover, we also found
that the change of serum exosomal circRNA-100,338
after the surgery could predict the pulmonary metas-
tasis of HCC, which was more sensitive than AFP in
the present study.
In addition, the present study also has some limita-

tions. The lack of detailed molecular mechanism of exo-
somal circRNA-100,338 is one of the major limitations.
Moreover, the clinical significance of the exosomal
circRNA-100,338 in serum of HCC patients need to be
further investigated in samples of a larger size. It is of
great importance for the clinicians to develop anticipa-
tive therapeutic strategies, if the diagnostic and prognos-
tic values of exosomal circRNA-100,338 in serum of
HCC patients can be validated in HCC cohorts with lar-
ger sample size.

Conclusions
In conclusion, this study for the first time showed that
exosomal circRNA-100,338 participated in the regulation
of angiogenesis and HCC metastasis. Additionally, we
also demonstrated that exosomal circRNA-100,338 was
associated with HCC progression in nude mice model.
This study provided a novel mechanism regarding the
crosstalk between HCC metastasis and angiogenesis me-
diated by exosomal circRNA-100,338, which greatly im-
proved our understanding of the circRNA-100,338
function.
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