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Abstract

Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of
hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-
targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for
radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology,
especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the
strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular
pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
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Background
Solid tumors require the formation of a neovascular net-
work in order to grow and survive [1, 2]. Rapidly prolif-
erating tumor cells create a hypoxic microenvironment
that induces tumor angiogenesis. The rapidly growing
blood vessels comprising the neovascular network are
often aberrant, disorganized and dysfunctional, leading
to an inadequate oxygen supply which further increases
tumor hypoxia [3, 4]. Oxygen demand, on the other
hand, is often deregulated subsequent to tumor-specific
metabolic changes. Together, this results in a dynamic,
rapidly changing tumor microenvironment characterized
by regions of nutrient deprivation and oxygen deficiency
[5–7]. Tumor hypoxia was recognized as early as in the
1950s, when Gray and Thomlinson demonstrated by
mathematical calculations, based on histological sections
of human tumors, that regions around necrotic areas
display a hypoxic oxygen gradient [8]. Studies in the fol-
lowing decades identified oxygen deficiency to be char-
acteristic for the majority of solid human tumors [9–15].

In contrast to the early point of view that a radial hyp-
oxia gradient primarily expands from the necrotic tumor
core towards the tumor rim, it has since been estab-
lished that a wide range of fluctuating oxygen tension
values (from mild oxygen deficiency to anoxia) are het-
erogeneously dispersed in the tumor microenvironment.
Both hypoxia and necrosis were independently proven to
be predictors of poor clinical outcome, independent of
the tumor stage, histological grade and lymph node sta-
tus [16–18]. Hypoxia has also been associated with gen-
omic instability [19], immune suppression [20, 21], the
different steps of the metastatic cascade (including inva-
sion, migration, intravasation and extravasation, forma-
tion and support of the premetastatic niche) [22], and an
increase in resistance to chemotherapy and radiotherapy
[23, 24].
In this review, we focus on the role of hypoxia for the

treatment response to radiotherapy and discuss existing
and emerging strategies to overcome hypoxia-induced
radioresistance.

The Definition of Hypoxia
Hypoxia is generally defined as a reduced partial pressure
of oxygen (i.e. pO2 or oxygen tension) below a
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physiological level. However, attributing a single number
to this definition is not so straightforward: physiological
pO2 in the human body ranges from ~ 100mmHg in the
lung alveoli to values below 1mmHg in the mitochondria.
This pressure gradient or the “oxygen cascade” ensures
the diffusion of oxygen throughout the body, guiding it
from the “supplier” (the alveolar gas) to the “sinks” (the
cells). Physiologically, all values of pO2 present in this cas-
cade could be considered “normoxic” [25].
In a recent review [26], Rey et al. calculated the median

oxygen tension in various tissues based on previous publi-
cations. The oxygen tension in normal tissues ranged from
30 to 52mmHg (corresponds to 3.9 to 6.8% oxygen con-
centration in the gas phase at sea level), while tumoral
oxygen tension ranged in between 5.3 to 14mmHg (0.7 to
1.8%), often with a considerable fraction of cells reaching
below 5mmHg (0.7%) [27]. Although these median values
would suggest an overall hypoxic environment in most tu-
mors, the typical tumoral pattern of oxygenation is highly
heterogenous and dynamic. Such heterogeneity is a result
of the distinct organization, structure and function of the
tumor vasculature and ongoing angiogenic processes. In
contrast to normal blood vessel networks, the tumor vas-
culature comprises a chaotic network of aberrant, hier-
archically disorganized and often dysfunctional vessels [3,
4]. As a result, two types of hypoxia can be described in
the tumor tissue [28]. Chronic or diffusion-limited hyp-
oxia arises from the oxygen diffusion limit of approx.
100 μm and is therefore relevant for cells that do not have
access to a blood vessel within this limiting distance.
Acute or perfusion-limited hypoxia, on the other hand, is
a result of temporary instabilities in the blood flow. Taken
together, this illustrates the complexity and heterogeneity
of the oxygenation status in solid tumors. Consequently,
reducing the definition of hypoxia to a specific oxygen
level is not possible without a specific context, which
needs to take into account the tissue type and cellular
composition, the spatiotemporal heterogeneity of oxygen
tension in the tumor and most importantly, the endpoint
of interest.

Radiotherapy and Tumor Hypoxia
The first indications that a tissue poorly supplied with
oxygen might be more resistant to ionizing radiation (IR)
came about as early as in the 1920s [29, 30], culminating
in Gray’s seminal paper in 1953 [31], where he demon-
strated on the preclinical level that a decrease in hypoxia,
achieved by improving oxygen delivery, results in in-
creased radiosensitivity. These discoveries paved the way
to numerous subsequent studies, focusing on elucidating
the underlying mechanisms of hypoxia-induced radioresis-
tance, on determining the significance of hypoxia-induced
radioresistance on the clinical level, and finally, on devel-
oping strategies for radiosensitization.

Direct Interaction of Ionizing Radiation with Oxygen: the
Oxygen Fixation Hypothesis
The dependency of cellular responses to IR on the oxygen
level has been recognized for almost a century [30, 31].
This dependency is quantitatively described as the oxygen
enhancement ratio (OER), defined as the ratio between
the radiation dose under hypoxic conditions and the radi-
ation dose under normoxic conditions necessary to
achieve the same amount of cell killing (determined
in vitro by clonogenic assays) (Fig. 1a). For most cells in
culture, the OER between anoxia (i.e. complete oxygen
deprivation during irradiation) and air (150mmHg or 21%
oxygen) lies between 2.5 and 3 [32]. In a study measuring
the change in OERs over a range of oxygen tension values,
Wouters et al. [33] discovered that the greatest change in
radiosensitivity i.e. the highest OER occurs in the range of
0.5–20mmHg (0.05–2.5%). with an increase above 20
mmHg only showing minor changes in radiosensitivity.
Together with the physiological values stated above, it can
be concluded that from a radiobiological point of view,
most normal tissues under physiological conditions are
sufficiently oxygenated. On the other hand, for most tu-
mors, a significant proportion of tumor cells are exposed
to hypoxic conditions and consequently are prone to
radioresistance.
The mechanism behind the oxygen-driven increase of

cellular radiosensitivity is explained by the “oxygen fix-
ation hypothesis” (Fig. 1b) [29, 32]. In short, this hypoth-
esis states that the probability of permanent IR-induced
DNA damage is higher in the presence than in the ab-
sence of oxygen. Upon impinging on the tissue, photons
ionize the atoms of the absorbing material and generate
free electrons. These electrons mediate the IR-induced
damage, either by directly damaging the macromole-
cules, or by interacting with water in a process that
yields hydroxyl (OH•) and hydrogen (H•) radicals. These
short-lived and highly reactive molecules react with and
damage the macromolecules. In absence of oxygen, the
extent of these reactions is limited due to the radicals’
instability, and the majority of the damage is readily
repaired. In presence of oxygen, additional reactive oxy-
gen species (ROS) are formed, e.g. hydrogen peroxides,
which increase the overall concentration of DNA dam-
aging agents. Furthermore, free radicals produced in the
critical targets (R•) can also react with oxygen to pro-
duce first peroxyl radicals (ROO•) and ultimately the
more stable and less well repairable ROOH, thereby
chemically “fixing” the damage. This phenomenon, also
known as the “Sauerstoffeffekt” (i.e. oxygen effect), forms
the basis of our understanding of oxygen-mediated
changes in radiosensitivity. Notably, the oxygen effect
is by definition a purely physicochemical effect and
does not depend on the radiobiological processes ex-
plained below.
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Hypoxia-Induced Processes Relevant for Radiotherapy
In the physiological state, oxygen and nutrient depletion
constitute a major source of cellular stress and thereby
induce evolutionary conserved adaptive changes that ei-
ther increase the delivery or decrease the consumption
of missing substances [34, 35]. An increase in erythro-
poiesis and angiogenesis [36, 37], in epithelial permeabil-
ity [38] and vascular tone [39] may all contribute to
enhance the delivery of oxygen to the hypoxic tumor
area. To attenuate oxygen consumption, hypoxic cells
decrease oxidative phosphorylation by switching to an-
aerobic glycolysis [40] and reduce the number of mito-
chondria (i.e. mitophagy) [41]. Furthermore, to facilitate
tissue recovery after potential damage induced under
such circumstances, hypoxia can induce expression of
growth factors and thereby promote cell proliferation
and survival [42]. In case these compensatory actions fail
and severe hypoxia persists, normal cells undergo cell
cycle arrest and eventually cell death [43–45].
Many of the aforementioned mechanisms, such as in-

duction of angiogenesis and promotion of cell prolifera-
tion, remain active in the tumor. However, unlike in
healthy cells, selective pressure of hypoxia-induced cell
cycle arrest and apoptosis leads to a selection of more
aggressive malignant clones with disruptions in physio-
logical feedback mechanisms that would normally halt
uncontrolled cellular growth [42, 46, 47]. As a result,
hypoxia-induced adaptive changes effectively promote
cancer progression. In addition to the listed physio-
logical mechanisms that cancer cells co-opt, hypoxia

directly promotes immortalization [48], genetic instabil-
ity [7, 19], immune evasion [20, 21], cancer stem cell
survival [49], invasion and metastasis [22]. All of these
mechanisms, but especially the selection of malignant,
apoptosis-resistant clones, regulation of angiogenesis
and vasculogenesis, metabolic changes and interference
with the DNA damage response, determine hypoxia as
one of the key factors that mediate resistance to radio-
therapy, beyond the oxygen effect. In this review, we dis-
cuss the molecular processes behind these radiotherapy
resistance-promoting mechanisms. A detailed overview
of the complex processes through which hypoxia pro-
motes malignancy is not the scope this review and the
reader is referred to other comprehensive literature [6,
26, 50, 51].

Oxygen Sensing Mechanisms: Hypoxia-Inducible Factors
and Beyond
Hypoxia-inducible factors (HIFs) constitute a family of
transcription factors that act as the main mediators of
the cellular response to hypoxia [34, 36, 51–56] and
were first identified almost three decades ago as the key
regulators of hypoxia-induced erythropoietin transcrip-
tion [57]. HIFs are heterodimers formed by a constitu-
tively expressed β-subunit and an oxygen-sensitive α-
subunit. In mammals, three isoforms of the α-subunit
differentiate the three paralogs: HIF-1α, HIF-2α and
HIF-3α. Upon binding of the HIF-β subunit, these three
paralogs compose the three transcription factors HIF-1,
HIF-2 and HIF-3, respectively. In this review, we focus

Fig. 1 Direct interaction of ionizing radiation with oxygen: the oxygen fixation hypothesis. (a) Oxygen enhancement ratio (OER). Curves represent
the surviving fractions of cells irradiated with increasing doses of ionizing radiation under normoxic (black) and hypoxic (red) conditions. The OER
is defined as the ratio of the radiation dose under hypoxia and the radiation dose under normoxia to achieve the same biological effect. (b) The
oxygen fixation hypothesis mechanistically describes the role of oxygen for enhanced DNA damage and cell killing under normoxic conditions
and includes the initial formation of more ROS and chemical derivatization (“fixation”) of DNA damage in presence of oxygen. See details in text
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on HIF-1 as the most investigated isoform in the context
of radiotherapy optimization and only mention the
emerging data relating to HIF-2 and radiotherapy. The
role of HIF-3 remains elusive and as such, is not covered
in this review.
In the presence of oxygen, the α-subunit of HIF-1 is

posttranslationally hydroxylated through the interaction
with oxygen-sensitive dioxygenases, namely the HIF
prolyl-4-hydroxylase domain enzymes (PHDs) [58–60].
Hydroxylation allows for binding of the von Hippel-
Lindau (VHL) tumor suppressor protein. In this bound
state, the α-subunit is targeted for poly-ubiquitination
and proteasomal degradation. PHDs require oxygen as a
cofactor for activity and are therefore rendered inactive
when oxygen is not available. Consequently, in hypoxic
conditions HIF-1α and HIF-2α remain stable and bind
to the constitutively expressed HIF-β subunit, forming
the transcriptionally active heterodimeric HIF-1 and
HIF-2 complexes, respectively, which bind hypoxia re-
sponse elements (HREs) in the regulatory regions of
hundreds of target genes [61, 62]. In contrast to this dir-
ect binding to the regulatory regions and subsequent
gene activation, HIF-1/2 dependent transcriptional
modulation can also occur indirectly, through transacti-
vation of genes for long non-coding and micro RNAs
[62, 63] as well as DNA and histone modifiers [64].
Through a complex interaction between direct and in-
direct effects, HIFs modulate the expression of over
thousand genes and regulate the majority of the
hypoxia-induced adaptive mechanisms (reviewed in e.g.
[50, 60, 61, 65]).
The majority of studies over the last decades, that in-

vestigated hypoxia-altered gene expression, focused on
the HIF-pathway. However, Jumonji-family of histone
demethylases has long been speculated to mediate also
HIF-independent gene expression regulation [66]. In
2019 Batie et al. [67] and Chakraborty et al. [68] clearly
demonstrated for the first time direct, HIF-independent
oxygen-mediated gene expression modulation by the
lysine-specific Jumonji-family demethylases KDM5A and
KDM6A. Moreover, cellular phenotype alterations under
low pO2 conditions also occur due to numerous adaptive
mechanisms other than direct gene expression control.
For example, oxygen availability affects mRNA transcrip-
tion, splicing, stability and translation, protein folding,
protein stability and enzymatic activity [32, 50]. Further-
more, metabolic disturbances and other determinants of
cellular stress that accompany hypoxia interfere with
both HIF-dependent and HIF-independent signaling net-
works. This includes for example the nutrient-sensing
PI3K/AKT/mTOR pathway [69] and the unfolded pro-
tein response (UPR) [70]. Overall, the research into the
HIF-independent effects of hypoxia is ongoing, and the
potential role of such effects for hypoxia-induced

radioresistance remain to be investigated. For a compre-
hensive overview, the reader is referred to [35].
Given the role of HIF-1 as a key player for tumor angio-

genesis and as part of the cellular responses to cancer
treatments, it is not surprising that the status of HIF-1α
overexpression correlates with poor prognosis in many
cancer types (head and neck, oesophagus, pancreas, stom-
ach, gall bladder, liver, colon, lung, pleura, breast, ovaries,
uterus and bladder [71–84]). Similar to HIF-1α, HIF-2α
overexpression also correlates with poor prognosis in sev-
eral cancer types (head and neck, brain, liver, colon, lung,
bladder, kidney) [85–91]. Thus, next to the direct physico-
chemical role of a low pO2 for radiotherapy resistance (see
above), HIF-1 mediates biological processes relevant for
hypoxia-related radiotherapy resistance. It is important to
note that the transcriptionally active level of HIF-1 starts
to exponentially increase already below the oxygen tension
of 40mmHg (6%) [92, 93]. Thus, compared to the physi-
cochemical “oxygen effect” and “radiobiological hypoxia”
described above, which occur in the range of 0.5 to 20
mmHg (0.05 to 2.5%), HIF-1-mediated biological effects
are exerted at a significant earlier stage of oxygen
deprivation.

The Interaction of Radiotherapy and HIF-1
The relationship between HIF-1 and radiotherapy is
complex and bilateral. On the one hand, HIF-1 confers
radioresistance through various cancer-promoting mech-
anisms. On the other hand, radiotherapy activates HIF-1
and its downstream targets, both through hypoxia-
dependent and -independent mechanisms.

Radiotherapy-Induced HIF-1 Activation Hypoxia-
dependent radiotherapy-induced HIF-1 activation in the
tumor occurs primarily through tumor vascular damage
and subsequent oxygen deprivation while multiple
mechanisms contribute to hypoxia-independent RT-
induced HIF-1 activation. The importance of such
mechanisms for radiotherapy was undoubtedly demon-
strated by Moeller et al. [94], who identified that HIF-1-
induced signaling in irradiated murine tumors follows
the pattern of IR-induced reoxygenation and primarily
occurs in the tissue with relatively high oxygenation
levels. The authors linked this surprising finding to (1)
ROS-mediated HIF-1α stabilization and (2) an increase
in the translation of HIF-1-regulated transcripts follow-
ing depolymerization of “stress granules” due to reoxy-
genation. Several studies suggested that ROS lead to
HIF-1α stabilization, probably by reducing the activity of
PHD enzymes [95–99]. However, other hypotheses have
emerged, for example attributing ROS-mediated regula-
tion of HIF-1α to the ROS-induced activation of the
PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways,
which in turn leads to an increase in HIF-1α expression
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(see below). This intriguing topic is the focus of several
recent reviews (see [100–103] and references therein). In
addition to ROS, heat shock protein 90 (Hsp90) has also
been implicated in HIF-1α protein stabilization following
irradiation [104, 105].
The PI3K/AKT/mTOR and the Ras/Raf/MEK/ERK

(also known as MAPK/ERK) signaling pathways are the
major IR-responsive signal transduction cascades linking
IR and HIF-1. Mutations in different entities of these
pathways are considered key contributors to the hall-
marks of cancer, most notably to malignant cell growth,
survival, proliferation and metabolism [106, 107]. The
HER family of receptor tyrosine kinases (RTKs), which
includes the epidermal growth factor receptor (EGFR or
HER1), are upstream of both of these pathways. An in-
crease in their phosphorylation and thus activation sta-
tus in response to IR activate these signaling cascades
even in absence of the corresponding growth factor li-
gands [108, 109]. Furthermore, rapid, IR-induced activa-
tion of the Ras/Raf/MEK/ERK pathway has been linked
to several other kinases, namely the extracellular signal-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK)
and p38 mitogen-activated protein kinase (MAPK) [108,
110]. Interestingly, an increase in glucose availability has
also been proposed as facilitator of IR-induced activation
of the PI3K/AKT/mTOR pathway [111]. The activation
of the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK path-
ways in response to IR, in turn, leads to an increase in
the expression of HIF-1α [111, 112].

Radiotherapy and the Hypoxic Tumor Microenviroment
Radiotherapy influences the immune cell compartment
and the stroma of the tumor microenvironment (TME)
[113–115]. The topic of the multifaceted role of radio-
therapy at the interface of hypoxia-mediated immuno-
suppression and the anti-tumor immune response is
comprehensively reviewed elsewhere [21, 115–122]. Ef-
fects of IR on the stroma can be divided into two topics:
(1) the interaction with endothelial cells and the tumor
vasculature and (2) the interaction with myofibroblasts
and radiation fibrosis.
In response to IR, endothelial cells mount a stress re-

sponse, followed by either recovery, or loss of function
and cell death. The ultimate fate depends on multiple
variables: the total dose, fractionation schedule, and the
intrinsic TME properties [123]. The affected endothelial
cells and vasculature lose their ability to deliver oxygen
and nutrients to the tumor cells, leading either to an
adaptive increase in hypoxia-mediated signaling or to in-
direct radiation-induced cell death (see also “Tumor
hypoxia in the age of hypofractionation” below). Vascu-
lar endothelial growth factor (VEGF) is at the center of
this interaction, as HIF-1 target gene and as essential
mediator of tumor (re)vascularization [124]. VEGF

activates the endothelial cells and promotes the forma-
tion of new blood vessels, thereby facilitating tumor cell
survival and radioresistance. Apart from hypoxia-
mediated signaling, the damage to the endothelial cells
directly facilitates an inflammatory response, mediated
in large part by nuclear factor kappa B (NF-κB) [125,
126]. This contributes to a radiation-induced inflamma-
tory state, which in turn activates signaling pathways up-
stream of HIF-1 (as described above) [127].
Radiation-induced fibrosis (RIF) is a dose-limiting late

side effect of radiotherapy. The development of RIF corre-
sponds to an abnormal wound healing process in response
to radiation injury, resulting in a self-propagating fibro-
proliferative state [113]. The process involves an early in-
flammatory response to IR-induced DNA damage,
followed by endothelial cell dysfunction and hypoxia. To-
gether, this leads to an abnormal activation of fibroblasts
(called myofibroblasts in the activated state) and excessive
deposition of collagen and other extracellular matrix pro-
teins. Transforming growth factor beta (TGF-β) plays a
central role in this process, with ROS-mediated posttrans-
lational activation of TGF-β as one of the main initiating
processes of RIF [128]. In addition to the rapid ROS-
mediated activation, the production of TFG-β and several
other profibrotic proteins such as connective tissue
growth factor (CTGF) and platelet-derived growth factor
(PDGF) is increased in response to hypoxia [129, 130].
Taken together, this illustrates the complex interaction
between radiotherapy, hypoxia and fibrosis in the normal
tissue, which is ultimately dose-limiting and thus contrib-
utes to radiotherapy treatment failure. Apart from their
role in the normal tissue, fibroblast abnormalities, specific-
ally identified in cancer-associated fibroblasts (CAFs) in
the TME, may also directly contribute to cancer radiore-
sistance [131]. The role of CAFs in radiotherapy has
recently been reviewed elsewhere [132]. In the context of
hypoxia, it is important to consider that - similarly to nor-
mal tissue - IR-induced, hypoxia-mediated signaling con-
tributes to abnormal activation of CAFs. In turn,
irradiated CAFs may facilitate various pro-tumorigenic
processes, many of which are already directly activated by
hypoxia. These include for example TGF-β-mediated
epithelial-to-mesenchymal transition (EMT) [133], or the
paracrine activation of pro-survival pathways such as the
PI3K/AKT/mTOR- (through e.g. insulin-like growth fac-
tor 1 – IGF-1 [134]) and the Ras/Raf/MEK/ERK-pathways
(through e.g. CXCL1 [135]). As described above, these
pathways can in turn activate HIF-1, thus closing a vicious
tumor-promoting circle.

Metabolic Reprogramming Reprogramming energy
metabolism is one of the hallmarks of cancer [106],
which encompasses cancer-associated alterations in
metabolic activities, supporting the altered metabolic
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demands of cancer cells and for tumor growth [136].
The Warburg effect or aerobic glycolysis is central to
metabolic reprogramming and comprises a tumor cell-
specific shift towards glycolysis and lactate production
even under normoxic conditions. Even though aerobic
glycolysis to lactate is less efficient than mitochondrial
oxidative phosphorylation in terms of ATP generation, a
high rate of glucose uptake provides sufficient precur-
sors for anabolic pathways such as the hexosamine path-
way, pentose-phosphate pathway (PPP) and one-carbon
metabolism. Furthermore the mitochondrial tricarb-
oxylic cycle is still fueled with a few percentages of pyru-
vate to generate intermediates now used as precursors
e.g. for lipid synthesis, thus ultimately also supporting
cell growth and proliferation [136–138].
As a transcriptional activator of glucose transporters

(most importantly, GLUT-1) [139] and virtually all glyco-
lytic enzymes, including lactate dehydrogenase A (LDH-
A) and others, HIF-1 is closely interconnected with this
metabolic network [40]. In addition to the upregulation of
glycolytic enzymes, HIF-1 supports aerobic glycolysis by
suppressing mitochondrial respiration, inhibition of mito-
chondrial biogenesis and induction of mitochondrial au-
tophagy [41, 140, 141]. Finally, as described above, HIF-1
promotes tumor angiogenesis, which increases the avail-
ability of glucose and other nutrients. Overall, HIF-1 activ-
ity drives a strong glycolytic flux, which - as part of a
positive feedback loop - keeps HIF-1 activity through
pyruvate-mediated inhibition of α-ketoglutarate (α-KG)
high [142].. In the absence of the co-factor α-KG, PHDs
cannot hydroxylate HIF-1α, thus leading to its
stabilization. Similar mechanisms link mutations in the
metabolic enzymes isocitrate dehydrogenase 1 and 2
(IDH-1/2), fumarate hydratase (FH) and succinate de-
hydrogenase (SDH) to a stabilization of HIF-1 even under
normoxic conditions: dysfunction of these three enzymes
causes accumulation of D-2-hydroxyglutarate (D2HG), fu-
marate and succinate, respectively, which in turn interfere
with PHD activity [136].
In the context of radiotherapy, glycolysis-induced activa-

tion of the PPP is one of the best examples illustrating how
HIF-1-mediated metabolic reprogramming may directly con-
fer radioresistance. Activation of PPP results in the regener-
ation of nicotinamide adenine dinucleotide phosphate
(NADPH), which in turn reduces oxidized glutathione to
protect cancer cells from ROS [136, 143, 144].
Furthermore, multiple positive feedback loops exist be-

tween aerobic glycolysis and radiotherapy-regulated sig-
naling towards HIF-1 activity. The PI3K/AKT/mTOR
pathway is one of the key drivers of aerobic glycolysis
[145]. Harada et al. observed that IR-induced tumor re-
oxygenation increases glucose availability, also leading to
the activation of the nutrient-sensing PI3K/AKT/mTOR
pathway. The subsequent increase of HIF-1α activity

further supported glycolysis [111]. However, HIF-1 is
known to suppress PI3K/AKT/mTOR signaling in re-
sponse to hypoxia and thus might also create a negative
feedback loop [69, 146, 147]. Thus, in the context of
hypoxia and radiotherapy, the role of the PI3K/AKT/
mTOR pathway is multifaceted.
These examples only serve to illustrate the network

complexity at the interface of tumor metabolism, hyp-
oxia and radiotherapy. Many other signaling pathways,
oncogenes and tumor suppressors are also closely con-
nected to the radiotherapy response and are also linked
to aerobic glycolysis. Originally identified as the major
driver of RT-induced apoptosis in tumor cells, the tumor
suppressor protein p53 is also activated under hypoxia
in a HIF-dependent manner and thereby selects for a
more aggressive treatment resistant tumor phenotype
[46, 148–150]. More recent data, however, suggest an
anti-apoptotic and p53-suppressing role for HIF-1 [151].
Interestingly, p53 also antagonistically regulates glycoly-
sis and oxidative phosphorylation via transcriptional
regulation of the downstream genes TP53-induced gly-
colysis regulator (TIGAR) and assembly of cytochrome c
oxidase (SCO2). For further information, the reader is
referred to [26, 143, 144, 152–155].

The Significance of Hypoxia in Radiation Oncology
Detecting Tumor Hypoxia on the Clinical Level
The development of a reliable and routinely usable tech-
nique to determine the oxygenation status of human tu-
mors has proven to be challenging. Considering the
anatomical position of solid tumors, the range of oxygen
tension in human tumors and the spatiotemporal het-
erogeneity of tumor hypoxia, such a technique would
ideally be non-invasive and repeatable, highly sensitive,
and with a high spatial and temporal resolution.
Due to technological limitations, early attempts to de-

termine the oxygenation status of human tumor had to
rely on indirect measurements. These primarily focused
on the vascular component of the tumor, correlating
hypoxia to e.g. vascular density based on immunohisto-
chemistry or the perfusion status based on computed
tomography (CT), positron emission tomography (PET)
or magnetic resonance imaging (MRI) [32, 156]. While
informative, such methods were not able to comprehen-
sively capture the complexity of tumor oxygenation, that
does not only depend on isolated characteristics of the
vascular component.
The introduction of the “Eppendorf” polarographic

needle electrode in the 1990s offered for the first time
the possibility to measure the oxygenation status of hu-
man tumors directly and reproducibly, albeit invasively
and with a low spatial resolution [157]. Although these
disadvantages precluded its introduction into routine
clinical practice, the “Eppendorf” electrode remains
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historically as one of the major contributors to the rec-
ognition of the importance of tumor hypoxia on the
clinical level.
In the following years, numerous other techniques for

hypoxia detection were developed and refined. In general,
the two main approaches include: (1) ex vivo techniques
such as immunohistochemistry or gene expression ana-
lysis performed on invasively obtained patient material
and (2) non-invasive or minimally invasive imaging tech-
niques, which enable in vivo hypoxia detection [32, 50,
158–161]. Immunohistochemistry is an affordable ap-
proach, which allows detection of hypoxic cells with high
spatial resolution. Targets visualized by immunohisto-
chemistry include endogenous, hypoxia-induced markers
(e.g. HIF-1α, carbonic anhydrase IX - CAIX, HIF-1α, glu-
cose transporters GLUT-1 and GLUT-3, osteopontin –
OPN) and exogenous markers that specifically accumulate
in hypoxic regions (e.g. 2-nitroimidazole - pimonidazole).
As a major advantage, endogenous markers do not require
planned intravenous administration of a chemical moiety
prior to biopsy, thereby enabling also studies on archival
material. On the other hand expression of the majority of
endogenous markers is regulated by a multitude of factors
other than hypoxia, thereby limiting the specificity of this
approach [162]. Furthermore, the pO2 level at which a
hypoxia-induced increase in gene expression occurs de-
pends on the endogenous marker of choice but does not
necessarily correlate with the pO2 level most relevant to
radiation oncology (see above).
The most widely used exogenous markers, 2-

nitroimidazoles, bind to their targets specifically at
pO2 levels below 10 mmHg [161]. The accumulation
of these compounds in respective tumor areas there-
fore highly correlates with areas of “radiobiological
hypoxia”. An additional advantage of exogenous
markers is the possibility to label them with probes
detectable by non-invasive imaging methods, such as
single photon emission computed tomography (SPEC
T), PET or MRI (see below). Aside from immunohis-
tochemistry, gene expression profiling has recently
been established as a promising tool for the ex vivo
classification of hypoxic tumors [163]. This molecular
biology technique assesses the transcriptional response
of the tumor to its microenvironment by using RNA
sequencing to detect hypoxia-specific gene upregula-
tion on the whole-tissue as well as on the single-cell
level. The selection of relevant genes can be tailored
to specific tumors and even individual patients. The
resulting “hypoxia gene signature” can then be used
to stratify tumors as normoxic or hypoxic, and to
guide the therapy in line with personalized hypoxia-
oriented treatment approaches.
Imaging techniques are non-invasive or minimally inva-

sive approaches that mostly rely on the administration of

exogenous hypoxia-specific compounds bound to probes
that can be detected by various imaging modalities. Spe-
cialized MRI approaches such as blood oxygen level
dependent (BOLD) imaging, however, can indirectly quan-
tify tumor hypoxia without a chemical probe. In addition
to their non-invasiveness, imaging techniques are gener-
ally sensitive and repeatable. Furthermore, it is possible to
obtain multiple measurements over time, thereby captur-
ing at least partially the temporal fluctuation of tumor
hypoxia, depending on the temporal resolution of the
technique. Despite these advantages, imaging methods still
face many limitations, mainly stemming from the spatial
and temporal resolution, affordability and availability of
such systems. Nevertheless, of the various techniques
researched to date, PET is the most widely used in the
clinical setting; PET hypoxia tracers such as 18F-
fluoromisonidazole (FMISO) and 18F-fluoroazomycin ara-
binoside (FAZA) have been applied in a number of clinical
studies [158, 159].

Recognition of the Role of Tumor Hypoxia in Radiation
Oncology
While the evidence from early preclinical studies
strongly suggested that tumor hypoxia and consequently
its modification could be highly relevant for the radio-
therapy response, initial attempts at implementation of
oxygen-mimicking drugs in the treatment protocol in
the 1970s failed to demonstrate a significant improve-
ment over radiotherapy alone [164]. In addition to this
initial lack of positive results, reliable in vivo detection
and quantification of hypoxia was a major hurdle at the
time (see above). The introduction of the “Eppendorf”
electrode, as a robust and reproducible method to meas-
ure the oxygenation status of human tumors, paved the
way towards the first irrefutable evidence of hypoxia-
induced radioresistance. Hoeckel et al. [165] and Fyles
and al [166]. demonstrated the predictive power of
tumor oxygenation in the radiation response of cervical
cancer, while Nordsmark et al. provided first strong clin-
ical evidence of the importance of tumor hypoxia in the
radioresistance of head and neck tumors [167]. Con-
trolled clinical trials employing modification of tumor
hypoxia undeniably demonstrated the significance of
hypoxia for the treatment response to radiotherapy, in
particular for squamous cell carcinoma of the head and
neck [168, 169].

The Relevance of Hypoxia in Conventional Radiotherapy
Conventional fractionation has been the mainstay of ra-
diation oncology for decades. By dividing the total radi-
ation dose into 1.8 to 2 Gy fractions given five days per
week up to a total dose of 40–70 Gy, conventional frac-
tionation exploits the biological differences between the
tumor and the normal tissue, resulting typically in less
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damage of the normal tissue for the same level of tumor
control. This increase in the therapeutic ratio is ultim-
ately the result of a complex interplay between different
factors, summarized by Withers as the four R’s of radio-
therapy: repair of sublethal cellular damage, repopulation
of cells following radiation, redistribution of cells within
the cell cycle and reoxygenation of the surviving cells
[32, 170, 171]. The phenomenon of reoxygenation oc-
curs after depletion of radiosensitive normoxic cells in
response to a single low dose fraction of IR (Fig. 2a). Im-
mediately after IR gradual reoxygenation of the more
hypoxic surviving tumor cells occurs within hours or
days. With conventional fractionation, this iterative
process of reoxygenation is taking place continuously
during the course of treatment, thereby partially improv-
ing tumor control without an influence on the normoxic
normal tissue [32]. Notably, given the proven negative
influence of hypoxia on the success of conventional
radiotherapy as mentioned above, reoxygenation on its
own is evidently insufficient to fully overcome hypoxia-
induced radioresistance.

Tumor Hypoxia in the Age of Hypofractionation
In contrast to conventional low dose fractionated regi-
mens, hypofractionation describes a radiation treatment
where the total dose is given in a smaller number of lar-
ger (> 2 Gy) fractions, resulting in an overall shorter
treatment time. When given as a single dose or a small
number of fractions, usually with the dose of 8–30 Gy
per fraction, the treatment is called stereotactic body
radiotherapy (SBRT) [172]. The interest in hypofractio-
nation has been rising steadily along with the techno-
logical advances in image guidance and highly conformal
dose delivery, which make it possible to deliver a large
dose to the tumor, while keeping the dose to the sur-
rounding normal tissues acceptable. Today, hypofractio-
nation is considered routine clinical practice in the
treatment of certain disease sites, such as the breast,
lung, liver and prostate [173]. Radiobiological implica-
tions of hypofractionation, including possible additional
biological effects, have been reviewed elsewhere [174,
175]. In short, the success of hypofractionation seems to
largely be attributable to an increase in the biologically

Fig. 2 The relevance of hypoxia for conventional fractionated RT and SBRT. In conventional low dose fractionated radiotherapy, the hurdle of
tumor hypoxia is overcome by iterative reoxygenation of radiation-resistant hypoxic tumor cells after irradiation and cell killing of oxygenated
radiation-sensitive tumor cells (a). In SBRT (b), single high doses of ionizing radiation will effectively kill tumor cells and damage the tumor
vasculature, leading to secondary tumor cell death (c) or will induce hypoxia-related resistance mechanisms (d). Radiotherapy-induced toxicities in
co-irradiated normal tissues often limit the required dose escalation for both low dose fractionated RT and SBRT to achieve tumor control
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effective dose to the tumor cells, although vascular dam-
age and antitumor immunity stimulation at high doses
per fraction might also play an important role. The
question of the relevance of hypoxia for hypofractiona-
tion similarly remains open (Fig. 2b). On one hand, hyp-
oxia was suggested to be more detrimental for
hypofractionated treatments, primarily due to the loss of
reoxygenation and possibly due to vascular damage,
leading to oxygen deprivation [174, 176]. On the other
hand, high-dose-mediated vascular damage was demon-
strated to induce secondary cell death in hypoxic cells,
which would normally escape direct IR-mediated death;
such an effect might counteract the potential loss of re-
oxygenation and explain the success of hypofractiona-
tion shown in clinical trials [175]. In a recent study
investigating for the first time tumor hypoxia in SBRT
on the clinical level [175], Kelada et al. demonstrated
that high single doses of radiation given to lung cancer
patients as a part of SBRT may induce an increased and
persistent state of hypoxia. Overall, the significance of
tumor hypoxia in the age of hypofractionation therapy
remains elusive, and future clinical investigations are ne-
cessary. At the same time the shift from classic fraction-
ated radiotherapy regimens to SBRT resulted in a new

search for hypoxia-modifying agents to be applied as
part of a combined treatment modality with
radiotherapy.

Targeting Tumor Hypoxia
Several strategies have been developed during the last
decades to overcome the hurdle of tumor hypoxia for
successful radiotherapy. These strategies can be grouped
into fundamentally different approaches (Fig. 3). While
hypoxic radiosensitizers, hypoxia-activated prodrugs and
molecular-targeting agents are preferentially effective in
hypoxic parts of the tumor, other approaches aim to in-
crease oxygen availability in the tumor and subsequently
to reduce tumor hypoxia and radiation resistance. Fi-
nally, radiotherapy-based approaches rely on the concept
of personalized medicine to specifically target tumor
hypoxia and thereby optimize the treatment planning
and delivery on an individual level.

Targeting Hypoxic Cells

Hypoxic Radiosensitizers The prototype of hypoxic
radiosensitizers are the electron-affinic nitroimidazoles,
such as misonidazole, etanidazole, pimonidazole and the

Fig. 3 Different approaches to targeting tumor hypoxia. Several, in part complementary pharmaceutical and radiotherapeutical approaches have
been developed since the identification of hypoxia as major resistance factor for successful radiotherapy, including pharmaceutical agents that
directly target hypoxic tumor cells and the tumor vasculature, and strategies that modify oxygen delivery to hypoxic tumor areas. In addition to
iterative reoxygenation as part of low dose fractionated radiotherapy regimes, improved treatment planning coupled with hypoxia-specific
imaging results in novel radiotherapy treatment delivery with highest dose conformity. HAPs hypoxia-activated prodrugs, HRE hypoxia response
element, TCA tricarboxylic acid cycle
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clinically approved nimorazole, which is given as stand-
ard of care to patients for head neck cancer radiother-
apy, in particular in Denmark [169]. Originally, already
more than 50 years ago, nitrobenzenes followed by the
nitroimidazoles were proposed to act as oxygen mimetic
agents and to react in hypoxic cells with short-lived, oxi-
dizing, IR-induced free DNA radicals to generate cyto-
toxic DNA strand breaks, thus creating an adjuvant
therapeutic effect [177]. Notably, while oxygen is metab-
olized already by normoxic cells close to the microvessel,
hypoxic radiosensitizers could diffuse further to reach
also hypoxic zones within the tumor.
Unfortunately, and despite the clarity of the concept,

several reasons might have contributed that these hyp-
oxic radiosensitizers did not find their recognition in the
clinical routine. While they indeed enhanced the radi-
ation response of hypoxic tumor cells in vitro and of
tumor xenografts in vivo in response to large single
doses, hypoxic radiosensitizers did not prove as effective
in response to a conventionally fractionated, low dose
treatment regimen [164, 178, 179]. Subsequently, these
compounds failed to significantly improve radiation
therapy as part of classic fractionated low dose treatment
regimens with concomitant reoxygenation, rendering
them less potent. Furthermore, due to severe toxicities,
especially neurotoxicity, many of these compounds could
not be applied in sufficiently high doses. For these rea-
sons, there is an ongoing effort required to identify novel
drugs and/or strategies that would have lower systemic
toxicity but retain hypoxic radiosensitization. One of
such novel compounds is RRx-001, a nitric-oxide-
generating dinitroazetidine radiosensitizer with direct
cytotoxic effects [180, 181]. Based on promising preclin-
ical data, RRx-001 is now being tested as part of a com-
bined treatment modality together with radiotherapy in
the treatment of primary brain tumors (NCT02871843)
and brain metastases (NCT02215512, [182]).
Lack of patient selection is an additional reason for

the failure of hypoxic radiosensitizers on the clinical
level. Using a 15-gene hypoxia classifier to detect a hyp-
oxia gene signature (see above) [183], Toustrup et al.
retrospectively analyzed the beneficial effect of nimora-
zole in head and neck squamous cell carcinoma (HNSC
C) patients treated as part of the Danish Head and Neck
Cancer Study (DAHANCA) 5 [184–186]. While the ori-
ginal study indeed found a beneficial effect from the
addition of nimorazole without pretreatment classifica-
tion (which eventually led to the introduction of nimora-
zole into the clinical use), the gene-signature-based
classification showed a markedly increased effect of
nimorazole in patients whose tumors were classified as
more-hypoxic. These findings were confirmed in the
IAEA-HypoX study (NCT01507467), where the retro-
spective analysis of HNSCC patients treated with

accelerated radiotherapy in combination with nimora-
zole demonstrated an increased benefit of nimorazole
addition in more-hypoxic tumors [187]. Patient classifi-
cation based on the hypoxic status of the tumor before
treatment administration could therefore uncover previ-
ously undetected treatment benefits in the “more-hyp-
oxic” subset of patients. Consistently, prospective
stratification based on the hypoxic status of the tumor is
now being evaluated as part of two HNSCC clinical
studies investigating the addition of nimorazole: gene-
signature-based classification is included in the non-
inferiority DAHANCA 30 study (NCT02661152) that
aims to verify the hypothesis that there is no benefit in
nimorazole addition to less-hypoxic patients; FAZA-
PET-based classification is being evaluated a part of the
DAHANCA 33 study (NCT02976051).
In addition to the ongoing efforts to optimize the use

of hypoxic radiosensitizers and to identify novel com-
pounds, it could be of interest to see a renaissance of
former drugs, e.g. the hypoxia-activated prodrug tirapa-
zamine (see below), and to probe them as part of
hypoxia-stratified, personalized trials with SBRT. Despite
the recent success of SBRT, hypoxic tumor entities still
represent a major challenge for a hypofractionated treat-
ment regimen with only a few high dose fractions of IR.

Hypoxia-Activated Prodrugs Hypoxic radiosensitizers,
such as nitroimidazoles, are biochemically reduced
under low pO2 conditions to become cellular cytotoxins
and are therefore already more toxic to hypoxic than to
normoxic cells independent of IR. These findings paved
the way for the hypoxia-selective generation of bioreduc-
tive prodrugs, which are activated by enzymatic reduc-
tion in hypoxic tissues [188]. Five different chemical
moieties have been exploited as prodrugs for bioreduc-
tion under hypoxic conditions. These include nitro-
groups (e.g. nitroimidazoles), quinones (e.g. mitomycin
C), aromatic N-oxides (e.g. tirapazamine (TPZ)),
aliphatic N-oxides (e.g. AQ4N) and transition metals
(e.g. cobalt (III) and copper (II) complexes to release
cytotoxic agents ligands). These prodrugs are reduced by
concerted mechanisms, which involve either one-
electron reductases followed by fragmentation or further
reduction of the initially formed prodrug radicals; or
two-electron reductions of specific prodrugs. In nor-
moxic conditions, the initial reaction is reversible, while
under hypoxic conditions these prodrugs become stable
cytotoxins, and act as mono−/di-functional DNA alkyla-
tors, intra- and interstrand crosslinkers, and DNA-
strandbreakers or additionally poison specific enzymes
involved in correct DNA-replication and repair, such as
topoisomerase II by TPZ [5, 189].
Even though some of these hypoxia-activated prodrugs

(HAPs) were also shown to physico-chemically sensitize
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for a combined treatment modality with IR (synergistic
effect), HAPs rather biologically cooperate with radio-
therapy, which is less potent in the hypoxic tumor envir-
onment (additive effect). Many of these HAPs have been
tested on the preclinical and clinical levels but often with
only minimal success in the clinics. Besides differences
with regard to classic pharmacokinetic aspects, such as
stability and diffusability, the different classes of HAP
also vary in their oxygen-dependence for activation,
which affects normal tissue toxicity. HAPs that are acti-
vated at intermediate rather than very low oxygen ten-
sion in the tumor (i.e. at the level of “radiobiological
hypoxia” as describe above), such as TPZ and its deriva-
tives, might be most potent to eliminate the relevant
fraction of tumor cells at this critical level relevant for
radiation resistance. However, such agents run the in-
herent risk of prodrug activation in normal tissues,
which can reach these intermediate oxygen tension
values in physiological conditions, thereby resulting in
concomitant, limiting side toxicities. Indeed, the initial
clinical studies of TPZ in combination with cisplatin
and/or radiotherapy failed to demonstrate an additional
benefit within the tolerable dose range [190]. However,
retrospective analyses later suggested a lack of patient
stratification and issues with radiation delivery as poten-
tial culprits for this failure [190–192]. Three clinical
studies are still ongoing, all of them investigating the
combination of TPZ and chemo- and immunotherapy in
hepatocellular cancer (NCT03259867, NCT02174549,
NCT03145558). A combination of TPZ with radiother-
apy is currently not being investigated on the clinical
level.
Dose-limiting toxicities represent a major hurdle for

hypoxia-activated prodrugs. Therefore, a strong interest
in the development of novel, less toxic compounds exist.
These include new derivatives of TPZ (for example
SN30000, a TPZ analogue that demonstrated superior
activity in preclinical studies [193, 194]) or compounds
with chemical moieties (nitro-compounds and quinones)
that are only activated under severe hypoxia.
Activated prodrugs could also induce a bystander ef-

fect by the diffusion of the active cytotoxic agents from
areas of severe hypoxia to tumor areas with intermediate
levels of tumor hypoxia and normoxia. The 2-
nitroimidazole conjugated bromoisophosphoramide TH-
302 (evofosfamide) and dinitrobenzamide PR-104 repre-
sent prototypes of such HAPs [195–197]. TH-302 re-
leases upon one-electron reduction and fragmentation a
diffusible nitrogen mustard derivative with cytotoxic ac-
tivity [198]. Although a bystander effect through diffu-
sion was initially thought to substantially contribute to
its single-agent activity, recent data suggest the absence
of such an effect [199, 200]. Furthermore, despite the
promising preclinical data and phase I/II clinical trials

[201, 202], TH-302 failed to meet the primary endpoint
in the two phase III clinical studies (NCT01440088,
NCT01746979). Notably, despite the preclinical evidence
of benefit in combination with radiotherapy [195, 203–
205], all trials except one (NCT02598687 failed to meet
the primary endpoint) only combined chemotherapy
with TH-302. Currently, no clinical trials with TH-302
are open. Nitrogen mustard-DNA crosslinking-based
PR-104 is another novel hypoxia-activated prodrug that
failed to fulfill the expectations derived from preclinical
data; dose-limiting hematological toxicities prevented
the advancement of the drug beyond phase I/II clinical
trials [196, 206–209]. Novel nitrobenzamides based on
PR-104 are being developed with CP-506 showing inter-
esting results on the preclinical level [210]. One of the
major questions to be resolved is the relevance of sched-
uling of the combined treatment modality of hypoxia-
activated prodrugs in combination with high-dose radio-
therapy [203]. Furthermore, adjuvant integration of im-
mune response regulatory agents as part of a combined
treatment modality might be a promising approach. Fol-
lowing treatment with HAPs the tumor microenviron-
ment might be less immune suppressive [211].
Of interest are not only prodrugs that release DNA-

oriented cytotoxins but also bioreductive prodrugs
which release diffusible inhibitors of non-genotoxic mo-
lecular targets. For example, PR-610 releases an irrevers-
ible inhibitor of the human EGFR upon bioreductive
activation [212]; the phase I clinical trial NCT016312790
had to be terminated due to unacceptable toxicities. TH-
4000 (tarloxotinib) is another prodrug of an EGFR in-
hibitor that advanced to phase II clinical trials as a single
agent. The initial two trials in non-small cell lung cancer
(NSCLC) and HNSCC [213, 214] did not meet the in-
terim milestone and were terminated, while the RAIN
study (NCT03805841) investigating TH-4000 in NSCLC
and other advanced solid tumors is ongoing.
The use of such novel bioreductive prodrugs alone or

in combination with IR could increase the local concen-
tration of the active agent in the tumor and could lead
to a more personalized and even synergistic treatment
approach. Future, intense preclinical and clinical investi-
gations will have to demonstrate under which circum-
stances a (neo-)adjuvant or a concomitant treatment
regimen of these bioreductive cytotoxins with (hypo)-
fractionated radiotherapy will be most effective.

Molecular-Targeting Agents The identification of key
molecular mechanism orchestrating the cellular response
to hypoxia uncovered new potential targets for overcom-
ing hypoxia-induced treatment resistance. Targeting the
HIF-1 pathway is a particularly interesting approach, as
it is a key modulator of the hypoxia-induced phenotype
and simultaneously regulates a plethora of resistance-
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inducing mechanisms (see above). Thus, HIF-1 targeting
agents can reverse an aggressive phenotype on their own
and at the same time synergize with radiotherapy. The
HIF-1 signaling network can theoretically be targeted on
multiple levels: by targeting the upstream pathways that
regulate HIF-1 expression, by inhibiting HIF-1 protein
expression, stability and function and by interference
with downstream targets of HIF-1.
The two pathways that are most commonly implicated

as upstream regulators of HIF-1 expression are the
PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways
[111, 112]. These are ubiquitous and intensively investi-
gated signaling pathways with pleiotropic effects. Subse-
quently, interference with these pathways does not
specifically inhibit HIF-1, but rather results in a multi-
tude of complex and interdependent effects. As such,
the topic of targeting of these pathways in combination
with radiotherapy is beyond the scope of this paper.
Similarly, HIF-1 modulates the expression of hundreds
of genes, and as such inhibition of downstream HIF-1
targets is only partially covered in this review. For a
more comprehensive overview, the reader is referred to
e.g. [26, 215, 216].
Both rational designed approaches, e.g. with RNA an-

tagonists, and high-throughput screenings, e.g. with
chemical libraries, were used to identify HIF-signaling
interfering agents and thus, the landscape of HIF-1 in-
hibitors currently comprises a multitude of compounds
with pleiotropic mechanisms. Multiple drugs such as
EZN-2968, PX-478, topotecan, bortezomib, vorinostat,
ganetespib (STA-9090) and geldanamycin have been re-
ported to (indirectly) target HIF-1 protein expression or
stability. EZN-2968 is a HIF-1α mRNA antagonist with
evidence of preclinical activity [217] and encouraging
proof-of-concept data from a phase I trial in patients
with advanced solid tumors [218] and awaiting results
from two insofar unpublished phase I studies
(NCT00466583, NCT02564614). The small molecular
compound PX-478 has been reported to act on multiple
levels, inhibiting transcription, translation and deubiqui-
tination of HIF-1α [219, 220]. In combination with
radiotherapy in prostate cancer [221] and with gemcita-
bine in pancreatic cancer [222], PX-478 showed encour-
aging results on the preclinical level. The initial findings
from the phase I clinical trial in patients with advanced
solid tumors (NCT00522652) demonstrated acceptable
tolerance in the dose range achieving detectable HIF-1
inhibition [223]. Topotecan is a known chemotherapeu-
tic agent that inhibits topoisomerase I. Surprisingly, a
high-throughput screening for HIF-1 inhibitors identi-
fied topoisomerase (Topo)-I inhibitors to repress HIF-1
transcriptional activity [224]. A pilot clinical trial con-
firmed the anti-HIF-1 activity in patients with advanced
solid tumors [225]. Topotecan is a part of numerous

ongoing clinical trials, however the majority does not in-
vestigate its role in the context of hypoxia. Bortezomib is
a proteasome inhibitor, clinically used in the treatment
of multiple myeloma. Besides its primary mechanism for
protein stabilization, recent studies suggest that bortezo-
mib also interferes, presumably as secondary effect, by
inhibiting upstream regulators of HIF-1α [226], repres-
sing HIF-1α translation [227] or by blocking HIF-1-
mediated transcription [228, 229]. The radiosensitization
effect of bortezomib in hypoxic cervical cancer cells
[230] and esophageal squamous cancer cells [231] has
been attributed specifically to HIF-1 inhibition, while
other studies suggested different mechanism to domin-
ate the increase in radiosensitivity [232–235]. The his-
tone acetylase inhibitor vorinostat interferes with HIF-1
signaling through translation inhibition, increase in ubi-
quitination and modulation of nuclear translocation
[236, 237]. Preclinical data support a radiosensitizing
role of vorinostat through multiple different mechanisms
[238–240], including in the setting of hypoxia [241, 242].
Ganetespib, geldanamycin and its analogues tanespimy-
cin (17-AAG) and alvespimycin (17-DMAG) all inhibit
Hsp90, which in turn leads to enhanced degradation of
HIF-1α [105, 243–246]. Considering the pleiotropic ef-
fects of Hsp90 inhibition, these compounds have been
extensively tested also in combination with radiotherapy,
however not yet in the context of hypoxia.
Inhibitors of HIF-1 transcriptional activity, including

for example echinomycin, PX-12 and chetomin, com-
prise a class of molecular hypoxia-targeting agents with
potentially much higher specificity than the compounds
mentioned above. Overall, this class of compounds is at
an earlier stage of development compared to the afore-
mentioned HIF-1 inhibitors, with only limited testing as
part of a combined treatment modality with IR. Echino-
mycin is a DNA intercalator for which the original clin-
ical trials in the early 1990s failed to demonstrate an
anti-tumor effect in an acceptable dose range [247]. Des-
pite these setbacks, preclinical research on echinomycin
continued, and in 2005 echinomycin was revealed to act
as a potent inhibitor of HIF-1 DNA-binding [248]. In
parallel, to overcome toxicities, novel derivatives and
formulations of echinomycin are being developed, such
as the YK-2000 and liposome-encapsulated echinomycin
[247, 249]. There are currently no clinical trials investi-
gating echinomycin or its derivatives. PX-12 is an inhibi-
tor of thioredoxin-1 with multiple proposed mechanisms
of cytotoxicity, of which HIF-1 inhibition and ROS gen-
eration are of particular interest in the context of hyp-
oxia and radiotherapy [250–253]. PX-12 has so far
only been clinically tested as a single agent, with the
lack of an anti-tumor effect leading to the termin-
ation of a phase II study [254]. Chetomin is a natural
product that inhibits HIF-1 transcriptional activity by
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blocking the interaction between HIF-1α and its tran-
scriptional coactivator p300 [255]. In vitro data dem-
onstrated a radiosensitization effect in hypoxic glioma,
fibrosarcoma and osteosarcoma cells [256–258]. In a
spontaneous lung cancer model and NSCLC xeno-
grafts, chetomin inhibited tumor growth without ob-
servable adverse effects [259].
A more detailed overview of HIF-1-targeting molecu-

lar agents, along with insights into emerging compounds
can be found in [260, 261]. Overall, the landscape of
HIF-1 inhibitors currently comprises a multitude of
compounds with pleiotropic mechanisms. Given that
HIF-1α proteins are very short-lived with a high turn-
over, it is not surprising that such compounds show
seemingly specific effects on the HIF-1 system because
they occur before other cellular effects become apparent.
While these HIF-1-directed agents are indeed in various
stages of preclinical and even clinical research in the
context of hypoxia, it should be emphasized that to date,
there are no compounds that could be convincingly con-
sidered as specific HIF-1-targeting molecular agents.
The main mechanism of action towards increased cell
killing in combination with radiotherapy similarly re-
mains to be investigated. HIF-1 targeting could sensitize
radioresistant cells to IR-induced cell death or it could
simply target the aggressive hypoxia-induced phenotype.
HIF-2 as a target in combination with radiotherapy

has been less investigated. Notably, HIF-2α is an emer-
ging target in clear cell renal cell carcinoma, with the
compound PT2385 as a first-in-class, highly specific
HIF-2α inhibitor currently tested in clinical trials [262].
Several in vitro studies observed a correlation between
increased HIF-2α levels with radioresistance and demon-
strated an increase in radiosensitivity following HIF-2α
inhibition [263–267]. However, the interaction of HIF-
2α inhibitors with radiotherapy on the clinical level is
currently difficult to predict.

Targeting Tumor Metabolism As described above,
tumor-specific metabolic reprogramming is an import-
ant contributor to radioresistance.
Between the different targeting strategies, increasing oxygen

availability by targeting oxidative phosphorylation is emerging
as a particularly interesting approach, with sufficient tumor
and stroma cells still using oxidative phosphorylation as a
major source for ATP generation under normoxic conditions
[136, 268]. Therefore, compounds reprogramming those cells
to anaerobic glycolysis or directly targeting mitochondrial res-
piration and metabolism sensitize for IR-induced cytotoxic
DNA damage by creating (a window of) enhanced tumor
oxygenation due to reduced oxygen consumption [269, 270].
A promising candidate belonging to this group of compounds
is metformin, one of the most commonly prescribed drugs in

the treatment of type II diabetes. The potential role of metfor-
min in cancer development and treatment was first observed
in retrospective studies of diabetic cancer patients [271]. Zan-
nella et al. showed that this effect can, at least partially, be at-
tributed to an improved tumor oxygenation and subsequent
increase in radiosensitivity [272]. Mechanistically, this occurs
through metformin-mediated inhibition of the mitochondrial
complex I [273]. Inhibition of complex I, in turn, leads to a
redistribution of oxygen and accumulation of α-KG, both of
which activate PHDs, and subsequently results in the degrad-
ation of HIF-1α. Thus, the contribution of metformin to in-
creased radiosensitivity can occur on two levels: (1) a direct
increase in cytotoxic IR-induced ROS through an increase in
oxygen availability and (2) an inhibition of HIF-1-mediated
prosurvival- and radioresistance-inducing signals [274]. Fol-
lowing these intriguing preclinical observations, metformin
also showed promising results in NSCLC patients receiving
chemoradiotherapy (NCT02109549, [275]) and in colorectal
cancer patients (NCT03053544). Currently, four clinical trials
are investigating metformin as a radiosensitizing, tumor
oxygenation-enhancing drug (NCT04170959, NCT03510390,
NCT02394652, NCT04275713). The anti-malarial agent ato-
vaquone is an additional example for an “old drug”, that was
repurposed in an attempt to exploit its ability to inhibit the
mitochondrial complex III [276]. The ability of atovaquone to
modify tumor hypoxia and thereby improve the efficacy of
radiotherapy was demonstrated in cell lines and tumor xeno-
grafts [277] and is currently being tested in NSCLC patients
(NCT0262808). The third example of a repurposed drug is
papaverine, a smooth muscle relaxant and complex I inhibitor
whose radiosensitizing properties are being tested in a phase I
clinical trial in combination with SBRT ([278],
NCT03824327). There are numerous other examples of oxi-
dative phosphorylation inhibitors that have shown impressive
results in cell lines and mouse models, but have not yet been
able to advance to the clinical level; these include arsenic tri-
oxide [279, 280], nonsteroidal anti-inflammatory drugs [281]
and glucocorticoids [282]. Finally, there is a multitude of
promising additional emerging compounds such as BAY-87-
2243 and IACS-010759. Both compounds demonstrated anti-
tumor activity as single agents ([283–285], NCT03291938,
NCT01297530) and in combination with radiotherapy [286]
or radioimmunotherapy [287].
Apart from the inhibition of mitochondrial functions,

other potential targets for radiosensitization in the net-
work of tumor metabolism include for example α-KG as
a rate-limiting substrate of the PHD family of enzymes
[288], and a broad spectrum of enzymes involved in gly-
colysis and the PPP (reviewed in [26, 153, 289]). Overall,
current mechanistic insights indeed support the role of
numerous metabolic entities in the development of
radioresistance, however the effects of interference with
these entities as targets in the context of radiotherapy
remains to be investigated.
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Hyperthermia Local application of heat in the range of
39–45 °C, i.e. hyperthermia, is a long-known anti-cancer
treatment modality with proven radiosensitizing and
cytotoxic effects that preferentially occur in the hypoxic
regions (136–140). As part of a combined treatment
with chemo- or radiotherapy, hyperthermia is already
approved for routine clinical use in several countries.
The radiosensitizing effect is thought to occur due to
the improvement of oxygen delivery to the tissue [290,
291] and due to interference with the DNA damage re-
sponse [292–298]. Cytotoxic effects can be direct and in-
direct: heat can directly induce necrosis, apoptosis and
mitotic catastrophe [299–301] and with an applied
temperature above 42 °C, heat will indirectly kill by in-
ducing vascular damage [302]. At the same time, how-
ever, exposure to elevated temperatures might result in
Hsp90-mediated HIF-1α protein stabilization even under
normoxic conditions, thereby potentially counteracting
the radiosensitizing effect [105]. The details and the rela-
tive importance of these effects remain elusive. The opti-
mal temperature, duration and timing of heat exposure
still need to be identified. Nevertheless, there is an active
interest for hyperthermia in the radiation oncology com-
munity, illustrated by the fact that there are currently 16
active clinical trials investigating the combination of
hyperthermia and radiotherapy. The addition of
hypoxia-targeting compounds to the combination of
radiotherapy and hyperthermia might be an interesting
future approach, as demonstrated by Sadeghi et al. [303]
who investigated temperature-sensitive liposomes loaded
with the hypoxic radiosensitizer pimonidazole.

Targeting the Tumor Vasculature
In contrast to the aforementioned approaches, which
primarily target hypoxic tumor cells, inhibitors of angio-
genesis (IoAs) aim at cells of the tumor vasculature. In-
tuitively, IoAs should destroy the tumor vasculature and
thus increase tumor hypoxia. Early preclinical data in-
vestigating the combination of radiotherapy with IoAs in
mouse tumor models offered conflicting results: while
there was evidence of an increase in radioresistance fol-
lowing an IoA-mediated increase in hypoxia, there were
also reports of a delayed tumor growth when combining
the two treatment modalities [304–307]. Specifically, the
fumagalin-derivative TNP-470, which specifically inhibits
endothelial cell proliferation, and the endogenous IoA
angiostatin, were demonstrated in several animal tumor
models to enhance tumor growth delay and to surpris-
ingly and counterintuitively increase tumor oxygenation,
when used in combination with IR [305, 306, 308, 309].
In our study using a murine mammary carcinoma allo-
graft model, we found that an IoA-induced increase in
tumor hypoxia is nullified when combined with irradi-
ation, most probably due to the decreased demand for

oxygen by the drastically reduced number of tumor cells
surviving the first few fractions of irradiation [310].
Nevertheless, the existence of contradictory data and the
potential to antagonize radiotherapy contributed for a
long time to the reservations to combine IoAs with
radiotherapy in the clinics.
In 2001, Jain coined the (now widely accepted) term

“normalization” of the tumor vasculature to explain the
paradoxical findings of IoA-induced potentiation of the
effects of chemotherapy and radiotherapy [311–313].
Tumor hypoxia is caused by a dysregulated tumor vascu-
lature and an overproduction of angiogenic growth fac-
tors. Anti-angiogenic strategies were demonstrated to
destruct immature microvessels, to stabilize leaky vessels
and to remodel the dysfunctional tumor vasculature to a
normal phenotype with increased tumor blood flow and
oxygen delivery. This process could contribute to the in-
creased treatment response originally observed and now
aimed for by the combined treatment modality of IR
with IoAs. A major obstacle though is that normalization
of the tumor vasculature is a transient process only oc-
curring within a short time window and highly
dependent on correct dosing of the respective inhibitor
and on the individual tumor environment. Nevertheless,
this line of thinking resulted in preclinical studies, that
successfully demonstrated an enhanced radiation re-
sponse when tumors were irradiated during a transient
increase of tumor oxygenation [314–316]. These studies
were performed on tumor xenografts and orthotopic
tumor models treated with different classes of anti-
angiogenic agents, such as the VEGF-directed antibody
bevacizumab, the VEGF-receptor directed antibody
DC101, the anti-angiogenic peptide anginex or multiple
VEGF-RTK-inhibitors [309, 317–321]. These preclinical
findings motivated a large number of clinical trials, the
majority of which investigated the combination of beva-
cizumab with radiotherapy, but also the broad-
sprectrum IoA endostatin, RTK-inhibitors sorafenib,
sunitinib, vandetanib and semaxanib; and thalidomide
(extensively reviewed in [314, 322]). Overall, the results
of these studies so far have failed to show a substantial
benefit of the addition of IoAs to a radiotherapy treat-
ment regimen; but do not exclude the feasibility of such
an approach, with patient selection and optimization of
dosing and scheduling remaining the key challenge.
Interestingly, not only VEGF but also other pro-
angiogenic factors such as placental growth factor (PlGF)
are secreted in response to irradiation and in a dose-
and time-dependent manner. Our own recent studies
showed a strong paracrine vasculature-protective role of
PlGF as part of a p53-regulated IR-induced resistance
mechanism and suggest PlGF as a promising target for a
combined treatment modality with radiotherapy [323].
Furthermore, not only endothelial cell-directed
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compounds, but also tumor cell signaling-directed
agents may contribute to a window of tumor vasculature
normalization, e.g. by the reduction of VEGF-secretion,
leading to reduced radiation resistance [319, 324, 325].
Overall, pharmacological-induced normalization of the

tumor vasculature with concomitant reoxygenation is an
interesting concept. However, a fractionated treatment
regimen of IR with concomitant IR-induced reoxygena-
tion might even supersede this effect. We currently can-
not predict which tumor entities and phenotypes will
respond to anti-angiogenic compounds accordingly, not
even on the preclinical experimental level. Even more
challenges exist in the clinics so that a defined window
of tumor vasculature normalization could be identified
on the individual patient situation, e.g. using hypoxia
PET imaging, to be exploited for SBRT. Conflicting data
on the outcome of different treatment schedulings exist
when using IoAs in combination with IR. The studies
suggest that it is not a neo-adjuvant but rather a con-
comitant and even more so an adjuvant treatment regi-
men that results in an enhanced tumor response to
irradiation in combination with several investigated anti-
angiogenic compounds [308, 309, 326–329]. As such,
preclinical scheduling experiments suggest additional
mechanisms to contribute to radiosensitization by anti-
angiogenic agents, besides normalization of the tumor
vasculature. IR affects the tumor vasculature in multiple
ways, including the switch to other forms of angiogen-
esis [330, 331]. But irradiation also induces endothelial
cell apoptosis, and the apoptotic response on the level of
the tumor vasculature correlates with the tumor re-
sponse to single high doses of IR (>15Gy) [332]. IoAs
also induce endothelial cell apoptosis and thus might en-
hance the fragility of the tumor vasculature also to low
dose fractions of irradiation and thereby increase the ef-
ficacy of radiotherapy [333–335].

Increasing Oxygen Delivery
Tumor hypoxia can be regarded as a shifted balance be-
tween demand and supply of oxygen relative to the nor-
mal tissue. Several earlier strategies were developed to
increase the oxygen transport capacity of the blood and
perfusion of the tumor with more oxygen. Hyperbaric
oxygen (HBO) therapy [336] and blood transfusions in
anemic patients [184, 337] failed to achieve a significant
improvement in the outcome, which together with the
complexity of the procedure and patient compliance led
to a loss of interest into these approaches. An increase
of the hemoglobin concentration could also be achieved
by erythropoietin injections, but clinical studies revealed
increased radiation resistance upon erythropoietin,
which can be linked to radiation protective
erythropoietin-induced signaling in certain tumor cells
[337–339]. The approach with the most clinical success

is the combination of carbogen (95% normobaric oxygen
+ 5% carbon dioxide) to deal with diffusion-limited
chronic hypoxia and nicotinamide to overcome acute
hypoxia. Two clinical trials, BCON in bladder cancer
[340, 341] and ARCON in HNSCC [342–344] reported
improvements in the outcome.
Other approaches to modify oxygen delivery include

allosteric hemoglobin modifiers (e.g. RSR13, that
reached phase III trials, but failed to improve overall sur-
vival [345]), agents that improve the diffusion of oxygen
(e.g. trans sodium crocetinate – TSC [346], currently in-
vestigated in phase III clinical trials in glioblastoma
(NCT03393000), and oxygen transport agents based on
hemoglobin and fluorocarbons (e.g. NVX-108 [347, 348],
currently tested in phase II clinical trials in glioblastoma
(NCT03862430)). The allosteric effector of hemoglobin
myo-inositol trispyrophosphate (ITPP) was also shown
to locally increase the pO2 in hypoxic tumors. Even
though mixed results exists on the potency of ITPP,
which is primarily due to pharmacokinetic aspects, we
and others demonstrated its chemo- and radiosensitiza-
tion capacity in both immunocompromised and im-
munocompetent tumor models [349–352], For a more
comprehensive review on the topic, see [348].

Optimizing Radiotherapy Treatment Planning and Delivery:
Dose Painting
Recent developments in the field of medical physics
made advanced, highly conformal techniques of dose de-
livery, such as intensity-modulated radiotherapy (IMRT)
and volumetric arc therapy (VMAT), a routine part of
clinical practice [353]. Together with the development of
real-time in vivo hypoxia-detecting methods such as
FMISO- or FAZA-PET (see above), the concept of “dose
painting”, which includes first identification of hypoxic
regions and then a targeted increase in the dose to those
regions, was established [354]. Although promising, such
PET-guided hypoxia dose painting faces inherent prob-
lems derived from the spatiotemporal heterogeneity of
tumor hypoxia and the resolution limit of PET [355].
The large multicenter trial RTEP5 (NCT01576796), in
which patients with NSCLC received a targeted dose in-
crease in hypoxic regions identified by FMISO-PET, ini-
tially failed to demonstrate an improvement in the
tumor control by dose painting [356]. However, long-
term follow-up showed an increase in the overall sur-
vival in the patients who received the radiotherapy boost
[357]. Currently, the NCT02352792 trial is recruiting
HNSCC patients and will investigate FMISO-PET-based
dose escalation, with an interim analysis demonstrating
the feasibility of the approach [358]. MRI-based identifi-
cation of hypoperfused volumes is another strategy to
define hypoxic areas in the tumor; such an approach is
used in an ongoing clinical trial that investigates targeted
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dose escalation in HNSCC (NCT02031250). In contrast
to the conventional dose-boosting strategies described
above, Tubin et al. have taken an innovative approach to
partially irradiate only hypoxic segments of bulky tu-
mors, with a short course of hypofractionated radiother-
apy [359, 360]. Based on the promising preclinical data,
suggesting the occurrence of bystander and abscopal re-
sponses [361], and the success from the initial clinical
experience [359, 360], this approach is now being tested
in a phase I clinical trial (NCT04168320).

Conclusion
A century of preclinical and clinical research on tumor
hypoxia and its impact on ionizing radiation-induced cell
killing have consolidated that a reduced pO2-level in the
tumor represents a major hurdle for successful radio-
therapy. The concept of fractionated low dose radiother-
apy with concomitant iterative reoxygenation in between
fractions and its clinical application for many tumor en-
tities remain the most powerful but still insufficient ap-
proach to overcome hypoxia-related radiation resistance.
Lack of successful pharmaceutical interventions and its
integration into combined treatment modalities is not
only due to the complexity of tumor hypoxia on its own
but is also linked to the physics- and imaging-oriented
discipline of radiation oncology and its strong focus on
technical innovations.
Molecular, cellular and (patho-)physiological processes

all contribute to a differential pO2 in the tumor in its com-
plex dynamics during tumor growth and in response to
treatment. Furthermore, invasive and non-invasive meth-
odologies probe tumor hypoxia at differential spatiotem-
poral resolutions, and only complementary approaches
characterize the hypoxia status of an individual tumor suf-
ficiently. It is not surprising that only a few pharmaceut-
ical approaches have reliably proven to decrease tumor
hypoxia, rendering personalized strategies even more diffi-
cult. At the same time, radiobiological research during the
last decades demonstrated that different treatment regi-
mens influence blood perfusion and oxygen diffusion in a
differential way. However, we only start to understand
these processes on the mechanistic level to optimally in-
crease the efficacy of radiotherapy in combination with
clinically relevant hypoxia-modifying agents.
Radiotherapy is nowadays often combined with

immuno-modulatory approaches resulting in improved
locoregional control and overall survival for some tumor
entities [116, 118–120]. However, tumor hypoxia not
only represents a hurdle for successful radiotherapy but
also creates an immunosuppressive environment [21,
117, 121]. As such, the development of potent tumor
hypoxia-modifying agents and its integration into
current novel treatment strategies in the field of radio-
therapy holds great promise to further improve tumor

control, the therapeutic window and successful
radiotherapy.
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