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Abstract

Background: The intrinsic immuno-ge7nomic characteristics of colorectal cancer cells that affect tumor biology
and shape the tumor immune microenvironment (TIM) are unclear.

Methods: We developed a patient-derived colorectal cancer organoid (CCO) model and performed pairwise
analysis of 87 CCOs and their matched primary tumors. The TIM type of the primary tumor was classified as
immuno-active, immuno-exhausted, or immuno-desert.

Results: The gene expression profiles, signaling pathways, major oncogenic mutations, and histology of the CCOs
recapitulated those of the primary tumors, but not the TIM of primary tumors. Two distinct intrinsic molecular
subgroups of highly proliferative and mesenchymal phenotypes with clinical significance were identified in CCOs
with various cancer signaling pathways. CCOs showed variable expression of cancer-specific immune-related genes
such as those encoding HLA-I and HLA-II, and molecules involved in immune checkpoint activation/inhibition.
Among these genes, the expression of HLA-II in CCOs was associated with favorable patient survival. K-means
clustering analysis based on HLA-II expression in CCOs revealed a subgroup of patients, in whom cancer cells
exhibited Intrinsically Immunogenic Properties (Ca-IIP), and were characterized by high expression of signatures
associated with HLA-I, HLA-I, antigen presentation, and immune stimulation. Patients with the Ca-IIP phenotype
had an excellent prognosis, irrespective of age, disease stage, intrinsic molecular type, or TIM status. Ca-lIP was
negatively correlated with intrinsic E2F/MYC signaling. Analysis of the correlation between CCO immuno-genotype
and TIM phenotype revealed that the TIM phenotype was associated with microsatellite instability, Wnt/B3-catenin
signaling, APC/KRAS mutations, and the unfolded protein response pathway linked to the FBXW7 mutation in cancer
cells. However, Ca-lIP was not associated with the TIM phenotype.
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Conclusions: We identified a Ca-lIP phenotype from a large set of CCOs. Our findings may provide an
unprecedented opportunity to develop new strategies for optimal patient stratification in this era of

immunotherapy.
Keywords: Colorectal cancer, Organoids, Gene expression, Intrinsic, HLA-Il, Immuno-genomic, Microenvironment,
Prognosis

Background cancers. We then evaluated the cancer-specific intrinsic

Understanding the intrinsic immuno-genomic character-
istics of cancer cells is essential if we are to develop opti-
mal patient stratification systems for targeted therapy.
Moreover, the tumor immune microenvironment (TIM)
has received significant attention due to its close associ-
ation with responses to immunotherapy. However, base-
line data are lacking, and few studies have examined the
intrinsic immuno-genomic properties of patient-derived
cancer cells. Currently, comprehensive characterization
of cancers is based on gene expression patterns in bulk
cancer tissues, which contain both cancer cells and the
TIM. RNA sequencing delineates the global gene expres-
sion pattern in primary cancer tissues as it captures can-
cer cells as well as various cells in the TIM; therefore,
gene expression patterns in cancer tissues reflect both
these entities [1-3]. However, the TIM is “noisy” and
can mask intrinsic cancer-specific signatures in bulk pri-
mary tissues. Therefore, an analysis based on the detec-
tion of purely intrinsic cancer cell-derived signals will
highlight the immuno-genomic characteristics of the
cancer cells themselves. To acquire such purely intrinsic
signals, it is necessary to use well-defined cancer models
rather than cancer cell lines, as the former will recapitu-
late cancer tissues in the absence of the TIM.

Recently, tissue-specific stem cells from several human
organs were cultured to generate organoids, which
mimic the 3D structure and function of the organ from
which they are derived [4-7]. These organoid models
have been developed for several cancers and used suc-
cessfully to recapitulate the architecture of primary can-
cer tissues [8—11]. Organoids derived from colorectal
cancer have been shown to maintain the therapeutic re-
sponses as well as various genomic characteristics of the
primary tumor [12-15]. However, these studies have in-
cluded only a small number of organoids, and studies in-
vestigating the collective features of colorectal cancer in
large numbers of colorectal cancer organoids (CCOs)
are still lacking. Pairwise integrative analysis of CCOs
and the corresponding cancer tissues with TIM in a
large number of samples can provide deeper insights
into the purely intrinsic immuno-genomic characteristics
of colorectal cancers.

Here, we generated 87 CCOs as part of an organoid
biobank project. These CCOs closely mimicked the
histological characteristics of their respective primary

immuno-genomic properties of colon cancer cells using
this large set of CCOs and their corresponding cancer
tissues after confirming that these organoids recapitu-
lated the signatures of the primary cancers at the tran-
scriptome level.

Materials and methods

Patient samples

Small (1-4 cm®) sections of colorectal cancer tissue sam-
ples were obtained from resected colorectal specimens
as part of the biobanking process for colorectal cancer at
the Asan Bio-Resource Center of Asan Medical Center
(Seoul, Korea). All tissues were used with the patients’
consent. The research protocol was approved by the
Ethics Committee of Asan Medical Center, and the en-
tire experimental protocol was conducted in compliance
with the relevant institutional guidelines. Samples were
categorized as tumor or normal tissue based on histo-
pathological assessment. The diagnosis of each patient
was confirmed by pathologists at Asan Medical Center.
A total of 87 colorectal cancers were used to generate
the CCO models used in this study. The clinicopatholog-
ical features of the 87 patients are summarized in Sup-
plementary Table 1.

Culturing patient-derived cancer organoids

Within 1h of excision, patient samples were placed in
cold Hank’s balanced salt solution (HBSS; Lonza, Basel,
Switzerland) containing 1x primocin (Invivogen, Hong
Kong, China) and transported to the laboratory on ice.
Samples were then washed three times with cold HBSS
containing antibiotics and cut into 1-2mm?® sections
using sterile blades. The sectioned samples were incu-
bated (37 °C for 40—90 min with intermittent agitation)
in DMEM/F12 medium (Gibco, OK, USA) supple-
mented with 0.2 U/puL collagenase II (Gibco), 1% penicil-
lin/streptomycin (Gibco), and 0.5 mg/mL amphotericin
B (2%; Sigma-Aldrich, MO, USA). After incubation, the
suspensions were triturated repeatedly by pipetting, cen-
trifuged at 1200 rpm for 5 min, and washed three times
with DPBS (Welgene). Next, the suspensions were
passed through 100 um cell strainers (BD Falcon, CA,
USA) and centrifuged at 600 rpm for 3 min. The result-
ing pellet was resuspended in 100 uL. minimum basal
medium for CCO (serum-free medium [DMEM/F12;
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Gibco] supplemented with 50 ng/mL human epidermal
growth factor [Invitrogen, CA, USA], B27 [Invitrogen],
1 mM N-acetylcysteine [Peprotech, NJ, USA], 10 mM
nicotinamide [Peprotech], 10 nM gastrin I [Peprotech],
500nM A83-01 [Peprotech], 10 uM ROCK inhibitor
[Peprotech], and 1% penicillin/streptomycin [Gibco]).
Then, 200 uL. Matrigel (Corning, NY, USA) was added
to the remaining 100 pL suspension to establish orga-
noids, and 150 pL of the resulting cell suspension was
allowed to solidify in a single well of a 6-well culture
plate (Corning) pre-warmed at 37 °C for 10 min. After
gelation, 3mL CCO MBM was added to the well, and
the medium was changed every 4 days. The organoids
were passaged after 1-3 weeks. For passage, a solidified
Matrigel drop containing the organoids was harvested in
cold DPBS and then centrifuged at 112xg for 3 min at
4.°C. The pellets were washed with cold DPBS and cen-
trifuged at 250 rcf for 15 min at 4°C, and the organoids
in the pellet were resuspended in 2 mL TrypLE Express
(Invitrogen) and incubated for 10 min at 37 °C to allow
dissociation. After this, 10 mL DMEM/F12 containing
10% FBS was added and the mixture centrifuged at
112xg for 3 min. The pellets were then washed with
DPBS, centrifuged at 112g for 3 min, resuspended in
CCO MBM + Matrigel (1:3), and reseeded at a ratio of 1:
3 or 1:4 to form new CCOs.

Histology and imaging

Tissues and CCOs (> passage 3) were fixed in 4% para-
formaldehyde, followed by dehydration, paraffin embed-
ding, sectioning, and standard haematoxylin and eosin
(H&E) staining. For immunohistochemistry (IHC), sam-
ples were incubated with primary antibodies specific for
carcinoembryonic antigen (CEA; 1:200 dilution; Dako,
CA, USA), CDX2 (1:200 dilution; Novocastra, IL, USA),
and cytokeratin20 (CK20; 1:400 dilution; Dako). The sec-
tions were subsequently incubated with secondary anti-
bodies (#AI-2000 and #AI-1000; 1:5000; Vector
Laboratories, CA, USA) and visualized using the ultra-
View Universal DAB Detection kit (Ventana Medical
Systems, AZ, USA). Nuclei were counterstained with
Harris haematoxylin. Images were acquired under a
Leica Eclipse E600 microscope.

Tissue microarray construction and immunohistochemical
analysis

A tissue microarray was constructed for the primary
tumor tissues. Two random cores (2 mm in size) were
obtained from formalin-fixed and paraffin-embedded
(FFPE) primary tumor tissues after microscopic evalu-
ation. The tissue microarray was subjected to immuno-
histochemical analysis using antibodies specific for
HLA-DR/DP/DQ/DX (1:1000, mouse monoclonal,
clone CR3/43; catalogue No. SC-53302; SantaCruz
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Biotechnology, CA, USA), KI-67 (1:200, Mouse mono-
clonal, clone MIB1; catalogue No. M7240; Dako,
Glostrup, Denmark), E2F1 (1:100, Mouse monoclonal,
clone KH95; catalogue No. 32-1400; Invitrogen), and
cyclin-E (1:400, Mouse monoclonal, clone H212; cata-
logue No. MA5-14336; Thermo, CA, USA). Briefly,
FFPE tissue sections were immunohistochemically
stained using an OptiView DAB IHC (immunohisto-
chemistry) Detection Kit and a BenchMark XT auto-
matic immunostaining device (Ventana Medical
Systems, AZ, USA). Antigen-antibody reactions were vi-
sualized using the Ventana OptiView DAB IHC Detec-
tion Kit (OptiView HQ Linker 8 min, OptiView HRP
Multimer 8 min, OptiView H,O,/DAB 8 min, and Opti-
View Copper 4 min). Counterstaining was performed for
12 min using Ventana Haematoxylin II and for a further
4 min using Ventana Bluing reagent. Finally, all slides
were removed from the stainer, dehydrated, and covered
with a cover slip prior to microscopic examination.

Targeted DNA sequencing and data processing

To obtain CCOs (> passage 3) for genomic analysis, a
solidified Matrigel drop containing the CCOs was har-
vested in cold DPBS and centrifuged at 112xg for 3 min
at 4°C. The pellets were washed with cold DPBS and
centrifuged at 250xg for 15 min at 4 °C. Then, genomic
DNA was extracted using the DNeasy Blood & Tissue
Kit (Qiagen, Germany). A DNA library was prepared
using the SureSelect XT custom kit (Agilent Technol-
ogy) after checking DNA quality. Pooled libraries were
sequenced at the Department of Pathology, Asan Med-
ical Center on an Illumina MiSeq instrument (Illumina,
CA, USA) using a targeted gene panel. This next-
generation sequencing (NGS) system has been approved
for clinical NGS testing by the Korean government. The
targeted gene panel is approximately 1 Mb in size and
contains 33,524 probes targeting 382 genes, including
the entire exons of 199 genes, 184 hotspots, and partial
introns of eight genes frequently rearranged in cancers
[16, 17]. Targeted sequencing of CCOs was performed
without matched normal tissue.

Sequenced reads were aligned against the human ref-
erence genome (National Center for Biotechnology In-
formation build 37) using BWA (0.5.9) with default
options [18]. Demultiplexing was performed using the
MarkDuplicates tool in the Picard package (Broad Insti-
tute, Cambridge, MA; http://broadinstitute.github.io/
picard, last accessed on February 14, 2018) to remove
PCR duplicates. The deduplicated reads were realigned
at known indel positions using the GATK IndelRealigner
tool [19]. Next, the base qualities were recalibrated using
the GATK BaseRecalibrator tool. Somatic single-
nucleotide variants and short indels were detected with
an unmatched normal using Mutect version 1.1.6 and
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the SomaticIndelocator tool in GATK (Broad Institute)
[19-21]. Common and germline variants from somatic
variant candidates were filtered out using the common
dbSNP build 141 (found in > 1% of samples), Exome Ag-
gregation Consortium release 0.3.1 (https://gnomad.
broadinstitute.org/), the Korean Reference Genome data-
base (http://coda.nih.go.kr/coda/KRGDB/index.jsp), and
an in-house panel of normal variants. Final somatic vari-
ants were annotated using Variant Effect Predictor ver-
sion 79 [22] and converted to the maf file format using
vef2maf (GitHub; https://github.com/mskcc/vef2maf, last
accessed on February 14, 2018). False-positive variants
were curated manually using the Integrative Genomics
Viewer [23]. Because CCOs comprise pure cancer epi-
thelial cells, variants with a variant allele fraction
(VAF) > 0.9 were considered to be biallelic.

Analysis of copy number variation

To determine copy number variation (CNV), the orga-
noid DNA bam file was analyzed using CNVKkit (v0.9.0)
[24]. In this study, the CNV fraction was defined as the
ratio of the region in which the log2 segmentation value
is > 0.4 or the log2 segmentation value is < — 0.4 to the
region in the exomes. Copy segments were visualized
using the copy number package [25].

Whole transcriptome sequencing and data processing

Total RNA sequencing was performed for 87 CCOs and
matched FFPE primary tumor tissues. For FFPE tissues,
manual microdissection of unstained tissue sections was
performed for viable tumor areas under a light micro-
scope, using the corresponding H&E slide as a reference.
Total RNA was extracted using the RNeasy Mini Kit
(Qiagen) and a cDNA library was constructed using the
TruSeq RNA Access Library Prep Kit (Illumina), starting
with 1 ug of total RNA. All samples passed the cDNA li-
brary quality assurance tests (minimum requirement > 5
nM). Paired-end sequencing of 100nt fragments was
performed on the HiSeq 2500 Illumina platform. RNA
sequence data from primary cancer tissues and CCOs
were processed in a similar manner; raw RNAseq data
were processed using the TCGA RNAseq Pipeline (v2)
after sequence quality assurance, and the quality of the
FastQ files was checked using FastQC (https://github.
com/s-andrews/FastQC, v0.7.15). The FastQC “basic sta-
tistics” results for all primary cancer tissues and CCOs
were “PASS”. Primary cancer tissues had the following
average basic statistics: total sequence, 50,391,531.95;
GC, 47.97%; total deduplicated percentage, 23.98. The
organoids had the following average basic statistics: total
sequence, 43,461,472.52; GC, 50.18%; total deduplicated
percentage, 19.85. TCGA RNAseq Pipeline (v2) was used
to analyze raw RNAseq reads and to quantify gene ex-
pression. Reads that passed the quality check were
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mapped to the human reference genome (hgl9) using
MapSplice [26] (v2.2.1). RSEM [27] (v1.3.0) was used for
transcript quantification. Quantified gene expression was
normalized using a fixed upper quartile normalization
method. Normalized raw gene expression data for both
CCOs and primary tumor tissues have been deposited in
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo; accession no. GSE171682).

TIM classification

The immune and stroma classes from the 87 primary
cancer tissues were distinguished using the Nearest
Template Prediction module [28] implemented in Gene-
Pattern (www.broadinstitute.org/genepattern). Each sam-
ple was predictively assigned to an “Immunogenic” or
“Non-immunogenic” class based on its immune charac-
teristics [1]. The immunogenic class was further divided
into a “Normal stroma” and an “Activated stroma” class
based on stroma characteristics [2]. Finally, the immuno-
genic class with normal stroma was classified as
immuno-active (Active), the immunogenic class with ac-
tivated stroma was classified as immuno-exhausted
(Exhausted), and the “Non-immunogenic” class was clas-
sified as immuno-desert (Desert) [1-3].

Profiling of tumor-infiltrating immune cells

To identify infiltrating immune cells, CIBERSORT [29]
with LM22 (22 immune cell types) gene signatures was
used to analyze RNA expression profiles of the 87 pri-
mary colon cancer samples or CCOs. The sum of the
scores for the 22 cell types was used as the total immune
score [11]. MCPcounter [30] was used to identify 10 cell
populations in the TIM.

Cancer signaling pathway analysis

Gene Set Enrichment Analysis (GSEA) v4.0.2 [31] was
used to identify alterations in cancer signaling pathways
based on RNA expression profiles in the primary tissues
or CCOs. The hallmark gene set v7.0 was used as the
Molecular Signatures Database, and the GSEA results
were considered significant when the FDR q value was <
0.25 and the nominal p-value was < 0.05. Gene Set Vari-
ation Analysis (GSVA) [32] was used to score the activa-
tion of hallmark gene sets and to calculate the CD8" T
cell exhaustion score using the CD8" T cell exhaustion
gene set [33] for each sample.

Detection of gene fusions

STAR-Fusion [34] v1.8.1 (default options) was used to
detect gene fusions in CCO RNA sequence data. To fil-
ter out false-positive results, fusion fragments per mil-
lion (FFPM) > 0.15 of total RNAseq reads was applied to
the STAR-Fusion results. The results were further fil-
tered based on the number of split reads and spanning
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reads: without any split reads, there should be at least 20
spanning reads, and one split read requires at least 10
spanning reads. When there are more than two split
reads, five or more spanning reads are required. False
positives were removed manually when the same fusion
was detected multiple times due to mis-mapping. The
filtered fusions were visualized as circos plots using chi-
meraviz [35] v1.8.5 in R.

Variant calling in RNA sequence data

RNA sequence reads were mapped against the human
reference genome (National Center for Biotechnology
Information build 37) using STAR (2.7.3) [36]. Picard
Markduplicates, GATK IndelRealigner, and BaseRecali-
brator were implemented in the same way as described
above for DNA reads. GATK HaplotypeCaller (3.8.0)
and GATK Mutect2 (4.0.2) were used to identify muta-
tions in the RNA BAM files. Mutations discovered using
HaplotypeCaller were filtered based on the following cri-
teria: FS>30.0 and QD <2.0. For variants detected by
Mutect2, only the “PASS” from FilterMutectCalls was
used. This analysis pipeline can also accurately detect
variants in RNA sequences [37]. RNA variants were
identified, and only those variants found in CCO sam-
ples were analyzed. Sequencing depth at the mutated
position was calculated using the “depth” option in
samtools.

HLA typing

Seq2HLA [38] (v2.3) was used to identify high-
resolution HLA molecular types from organoid RNA se-
quence data. HLA class I alleles were identified with
four-digit resolution. HLA-A and HLA-B results (includ-
ing the ambiguity flag) were mapped to the HLA super-

type [39].

Gain-of-function (GOF) mutations in TP53

GOF mutations in 7TP53 variants were classified based
on previously described criteria [40]. Briefly, 103 p53
mutant proteins were evaluated based on three categor-
ies of GOF activity, i.e., 1) interference with p73 activity,
2) transactivation of genes downregulated by wild-type
p53, and 3) cooperation with oncogenes during trans-
formation of rat or mouse embryonic fibroblasts [41].
Based on these criteria, 31 p53 mutations (S127Y,
P151S, R156P, Y163N, Y163C, V173L, R175H, C176Y,
H179R, H179Q), L194R, Y205C, H214R, Y220C, Y234C,
M2371, S241F, G245C, G245S, G245V, G245D, R248W,
R248G, R248Q, R273C, R273L, R273H, R273P, C275Y,
D281G, and R282W) were classified as GOF mutations
[40]. The remaining p53 mutations were classified as
having no evidence of GOF activity (NE-GOF).
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Molecular classification based on whole transcriptome
data

To identify cancer subgroups with specific signaling
pathways, all CCO samples in hallmark v7 gene sets
were scored using GSVA [32], based on CCO mRNA ex-
pression. Subgroups were identified using k-means clus-
tering analysis and principal component analysis (PCA).
The results were visualized using the R package Com-
plexHeatmap [42]. Consensus Molecular Subtype (CMS)
classification of organoid transcriptome data was per-
formed in R using the CMScaller package, which is suit-
able for colorectal cancer pre-clinical models [43].

Microsatellite instability (MSI) testing

MSI status was evaluated using polymerase chain reac-
tion (PCR). Fluorescence-labelled primers were used to
amplify five microsatellite loci, two mononucleotide re-
peats (BAT-25 and BAT-26), and three dinucleotide re-
peats (D5S5346, D2S123, and D17S250) in tumors and
matched normal samples. MSI status was based on the
length of the PCR product within the tumor sample ver-
sus in the paired normal sample. Samples with instability
in two or more of the five loci were defined as microsat-
ellite instability-high (MSI-H), samples with instability in
one of the five loci were defined as microsatellite
instability-low (MSI-L) and samples with no instability
were defined as microsatellite stable (MSS). Two sam-
ples were excluded from MSI-PCR testing and status
was determined using our previously reported algorithm
based on targeted DNA sequence data [44, 45].

Enrichment analysis

The enrichment score (ES) was calculated to determine
whether samples with specific binary events were
enriched in certain targets with continuous variables
across the whole sample [46, 47]. The 87 CCOs with
corresponding CD8" T cell immune scores were ordered
based on increasing immune scores. Next, the enrich-
ment score for biallelic alterations identified in KRAS in
the CCOs was calculated based on the ordered immune
scores and then normalized using the Kolmogorov—
Smirnov statistics [46, 47], as shown below. The enrich-
ment score for KRAS biallelic alterations (KBA) in the
organoids was calculated as follows:

n  IN-G . .. n |G . ..
MAX <Z/:1 re (if sample jin KBA)_Z/:[ NG (if not sample j in KBA)> #(1)

N =total organoid sample number; G =number of
organoid samples with KBA.

The enrichment score had a higher positive score
when samples with KBA were consistently ranked at the
top of the list of whole samples. The maximum enrich-
ment score was obtained when the n™ sample in the
KBA was ranked as the top enrichment score among
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whole samples. The KBA class label was permutated 10,
000 times, and the maximum enrichment score generat-
ing background distribution was recorded each time.
The permutated P-value was then calculated as follows:

B
p=B"Y_I(maxESy<maxES,), B = 10,000#(2)
b=1

The ES for TP53 GOF mutations was calculated in the
same manner.

Analysis of public cancer cell line genomics data and
differential dependency

Cancer cell line genomic data, including mutation calls,
were downloaded from the DepMap 19Q4 data release
(https://depmap.org/portal) [48]. Annotation of primary
disease sites for each cell line can be found in the Dep-
Map 19Q4 data release. Genes with dependencies in cell
lines with the FBXW?7 mutation (hotspot or damaging
mutation) were identified and compared with those in
cell lines without the FBXW7 mutation. Differences in
mean dependency between FBXW?7 mutated and non-
mutated cell lines were estimated, and the associated P-
values were computed using the Wilcoxon rank-sum
test. In addition, sensitivity of 1001 molecularly anno-
tated human cancer cell lines to 265 drugs was assessed
[49]. Cell line mutation data were obtained from the Cell
Lines Project v91 (https://cancer.sanger.ac.uk/cosmic).

Analysis of publicly available single cell RNA sequence
(scRNAseq) data

Normalized scRNAseq data from 17,469 epithelial cells
from 23 colon cancer tissues were downloaded from the
Gene Expression Omnibus database (https://www.ncbi.
nlm.nih.gov/geo/; accession no. GSE132465) [50]. The
Rtsne v0.15 package in R was used for clustering and
visualization of the scRNAseq expression data.

Analysis of publicly available CCO and TCGA data
Normalized RNA sequence data for CCOs were down-
loaded from the Gene Expression Omnibus database
(https://www.ncbi.nlm.nih.gov/geo/;  accession  no.
GSE65253) [11]. Level 3 RNAseq gene expression data
(released February 4, 2015) (illuminahiseq rnaseqv2-
RSEM_genes_normalized) for colorectal cancer were
downloaded from TCGA and pre-processed at the Broad
Institute (https://gdac.broadinstitute.org). Clinical data
were downloaded from cBioPortal (https://www.
cbioportal.org/).

Drug testing in CCOs

CCOs were cultured in 24-well plates for 2 weeks, and
then harvested and dissociated using TrypLE Express.
The dissociated CCOs were mixed with MBM + Matrigel
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(1:3 ratio) and seeded in 96-well white plates (10 uL of
2 x 10? cells/well; Corning). After gelation, 100 uL. MBM
was added to each well. The CCOs were allowed to grow
for 10-14-days until their diameters reached 100 pm.
Then, ten concentrations of FH535, ICG-001 (all Sell-
eckchem, TX, USA), and DMSO controls were added
every 3 days. After 6days, the medium was changed to
100 uL. MBM per well to measure cell viability, and
100 pL CellTiter-Glo (Promega) was added to each well.
The experiments were conducted in triplicate. The
plates were agitated for 30 min at room temperature
prior to luminescence measurement. ICs, values were
determined using Graph Pad Prism (v5.01).

Statistical analysis

Continuous variables were analyzed using Spearman’s
correlation analysis. Depending on the normality of data
distribution, the Wilcoxon rank-sum test (non-paramet-
ric) or Student’s ¢-test (parametric) was used to evaluate
the significance of differences in continuous variables
between groups. Fisher’s exact test or the chi-square test
was used to evaluate the significance of the differences
between categorical variables. Multivariate Cox propor-
tional hazards regression and logistic regression analyses
were also performed. All statistical analyses were per-
formed in R version 3.5.2.

Results

Development of CCOs and genomic characterization

A total of 87 patient-derived CCOs, cultured from
resected colorectal cancer tissues (Fig. 1a and Supple-
mentary Table 1) as part of the cancer organoid bio-
bank project, were wused. CCOs showed diverse
morphologies under a bright-field microscope, including
thick-walled spherical (R), thin-walled bubble-like (RM),
compact globular (RF), and budding tubular (RB) shapes
(Fig. 1b). H&E staining revealed that CCOs maintained
the characteristic histology of their respective primary
cancer. IHC showed that the CCOs recapitulate the ex-
pression patterns and percentages of positive cells for
transcription factor CDX2, differentiation marker cyto-
keratin20 (CK20), and carcinoembryonic antigen (CEA);
these markers were positive in most cancer cells (Fig. 1c
and Supplementary Fig. 1a). Histological examination
revealed that tumor organoids comprised only tumor
cells, with no TIM components, such as lymphocytes, fi-
broblasts, and blood vessel components.

The top 20 mutated genes in the CCOs are shown in
Fig. 1d. Although mutations in all genes could not be
identified because mutation analysis was based on tar-
geted sequencing, the most frequently mutated genes
were APC and TP53 (in 79% of the CCOs), followed by
KRAS (in 55% of the CCOs), and FBXW7 (in 24% of the
CCOs). These frequencies were similar to those


https://depmap.org/portal
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/geo;
https://www.ncbi.nlm.nih.gov/geo;
https://www.ncbi.nlm.nih.gov/geo/;
https://gdac.broadinstitute.org
https://www.cbioportal.org/
https://www.cbioportal.org/
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Fig. 1 Characteristics of 87 CCOs. (A) Clinical features, including age, survival, tumor location, and cancer stage of the 87 patients with
colorectal cancer. (B) Histology of the CCOs with 4 morphology types (R, thick-walled spherical; RM, thin-walled bubble-like; RF, compact globular;
RB, budding tubular). (C) Immunohistochemical findings of CCOs that recapitulate their primary tumors. (D) Mutation profiles of the 87 CCOs. (E)
Comparison of mutation frequencies between the 87 CCOs and an independent set of 832 colorectal cancers. (F) Diverse distribution of VAF in
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of the VAFs in the top 4 most frequently mutated genes between DNA and RNA from the 87 CCOs (Spearman'’s correlation test). (J) Significant
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previously reported for colorectal cancer [51]. The fre- The higher rate of detection of mutations in CCOs is
quencies of these known major driver gene mutations likely due to the high tumor cell content. Additionally,
were similar to those observed in an independent colo-  the genetic variants mainly arose as subclonal events. In
rectal cancer cohort at Asan Medical Center (n=2832), fact, the CCOs had widely distributed VAFs (Fig. 1f and
which were examined using the same targeted NGS plat-  Supplementary Fig. 1b), indicating the presence of sub-
form. However, other genes showed higher mutation fre-  clones. These data suggest that organoids have intra-
quencies in CCOs than in the cancer cohort (Fig. le). tumoral heterogeneity, as previously shown [8].
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We further examined correlations in VAF between
CCOs and primary tumors using RNA sequences of the
top 4 most frequent mutations, which mostly overlapped
between CCOs and primary tumors (Fig. 1g-h). Interest-
ingly, we observed a significant tendency toward loss-of-
heterozygosity (LOH) in TP53 (Fig. 1h). This is consist-
ent with a previous report showing that more than 91%
of the TP53 mutations undergo biallelic inactivation due
to biallelic mutations or copy-neutral LOH at the DNA
and RNA levels [52]. We also observed significant corre-
lations with respect to VAFs between organoid RNA and
organoid DNA (Fig. 1i and Supplementary Fig. 2a), as
well as between organoid DNA and tissue RNA (Supple-
mentary Fig. 2b-d). With respect to correlations be-
tween DNA and RNA, we observed non-linear patterns,
especially in the case of nonsense mutations (Fig. 1j);
this may be explained by nonsense-mediated decay of
mRNA [53]. Various copy number alterations were also
present across CCOs. Organoids with MSI-H exhibited
subtle copy number alterations (Supplementary Fig. 3a).
A total of 36 fusions were identified in 25 CCOs (Sup-
plementary Fig. 3b). However, no known targetable fu-
sion events were present. The frequency of HLA class I
molecular types (Supplementary Fig. 3c-d) was in good
agreement with that previously reported in 5082 Ko-
reans [54].

Oncogenic gene expression signatures are maintained in
organoids

Next, we examined whether oncogenic gene expression
signatures of the primary tumors were maintained in the
organoids. First, we found that genes exhibiting log2 ex-
pression of 5 or higher (n = 12,114) among patients were
significantly correlated between organoids and primary
tissues (Fig. 2a). Most genes had significant positive cor-
relations (Fig. 2b and Supplementary Fig. 4a). We se-
lected 5000 genes with the highest variance in organoids
and calculated the Spearman’s correlation coefficient be-
tween organoids and primary tumors. We found signifi-
cant correlation in mRNA expression between organoid
and matched tissues in the 87 patients (correlation coef-
ficients range: 0.501-0.71, Fig. 2c). These correlation co-
efficients were significantly higher in the Desert group,
which was characterized by a low level of immune cell
infiltration (Fig. 2d).

After confirming that the global expression patterns of
the 5000 genes were similar in organoids and primary
tumor tissues, we tested correlations using 1090 key
genes involved in carcinogenesis pathways from the hall-
mark gene sets v7; these genes were involved in Wnt/p-
catenin, DNA repair, Notch, PI3K/AKT/mTOR, MYC
target, P53, and KRAS signaling pathways. The majority
(72%) of these genes showed no overlap with the 5000
genes with high variance (Fig. 2e). A significant
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correlation was identified between the expression of this
gene set in organoids and primary tissues in the 87 pa-
tients (correlation coefficient range: 0.736—0.941); the
correlation coefficients for this gene set were signifi-
cantly higher than those for the set of 5000 genes with
high variance (Fig. 2f-g). Among the genes showing a
significant correlation between organoids and primary
tissues (e.g. APC, BRAF, CTNNBI, FBXW7, KRAS, MYC,
PIK3CA, PTEN, and TP53), APC showed the highest
correlation (rho =0.74, p<2.2e % Spearman’s correl-
ation test; Fig. 2h).

We then tested whether cancer signaling pathways
were maintained in the organoids. All primary tissues
and organoids were scored for the hallmark gene set v7
using GSVA [32]. We found that most cancer signaling
pathways tended to show a positive correlation (Fig. 2i)
and that there were significant correlations in signaling
pathways between organoids and primary tissues, includ-
ing the WNT/p-catenin, TP53, PI3K/AKT/mTOR, and
unfolded protein response signaling pathways (Fig. 2j).
In summary, we verified at multiple levels—i.e., total
genes, high variance genes, genes involved in key car-
cinogenesis pathways, important cancer-related genes,
and genes involved in cancer signaling pathways—that
organoids recapitulate the primary tumors in terms of
gene expression and mechanisms of carcinogenesis.

We also found that—as expected—microenvironmen-
tal signatures of gene expression were the major factors
that distinguished organoids from primary tissues (Sup-
plementary Fig. 4b-c). However, the expression of dif-
ferentiation markers or stem cell markers of intestinal
epithelium [55, 56] was also correlated between orga-
noids and primary tumor tissues despite the absence of
TIM in organoids (Supplementary Fig. 4d). Taken to-
gether, the gene expression patterns in organoids repre-
sent tumor cell-specific signatures (separate from the
TIM).

Cancer-intrinsic signaling pathways in CCOs

Gene expression analysis revealed that variable alter-
ations in cancer signaling pathways were present across
all 87 CCOs, indicating inter-tumoral heterogeneity (as
expected for tumors from different patients). Unsuper-
vised clustering using k-means (Fig. 3a) and principal
component analysis (Fig. 3b) identified four subgroups,
two of which were designated the high proliferation sub-
group, (k1), in which E2F/MYC pathways were activated,
and the mesenchymal subgroup, (k4) (Fig. 3a and c).
The k2 and k3 subgroups were in a “grey zone”, with no
specific alterations in gene expression associated with
particular pathways. The mesenchymal subgroup (k4)
harbored frequent KRAS mutations (Fig. 3d), and the
high proliferation subgroup (k1) showed the worst prog-
nosis in terms of recurrence-free survival (Fig. 3e). The
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high proliferation subgroup (k1) showed high expression
of genes associated with DNA replication stress re-
sponses (Fig. 3f), indicating active replication status. IHC
was performed in primary tissues to detect Ki67, E2F,
and cyclin-E (Fig. 3g and Supplementary Fig. 5a-b).
Ki67 expression in cancer cells derived from these pri-
mary tissues (Ki67-IHC) correlated with the expression
of Ki67 mRNA in the organoids, although no correlation
was identified between Ki67 mRNA expression in orga-
noids and primary tissue containing TIM (Fig. 3h and
Supplementary Fig. 5c). Additionally, the Ki67-IHC
correlated with E2F-IHC in cancer cells derived from
primary tumor tissues (Fig. 3h right). We validated these
findings using publicly available scRNAseq data [50] and
found that cancer cells expressing Ki-67 and E2F1 over-
lapped and the percentage of cancer cells expressing Ki-
67 varied among the 23 patients and correlated with the
percentage of cancer cells expressing E2F1 (Fig. 3i).
When the k1 subgroup (high proliferative group) was
compared with the k4 subgroup (mesenchymal sub-
group), the k1 subgroup in organoids showed IHC fea-
tures similar to those observed in the corresponding
primary tumors (Fig. 3j), suggesting that the high prolif-
eration activities of primary cancers were maintained in
the organoids. In addition, at the gene level, increased
expression of mesenchymal genes, including vimentin,
was identified in the k4 subgroup of CCOs while de-
creased expression was observed in the k1l subgroup
(Fig. 3k). Thus using scRNAseq data, we verified that
most of the single cells expressing MKI67 and the cells
expressing vimentin do not overlap (Fig. 3l), which sug-
gests that the high proliferation subgroup and mesen-
chymal subgroup are distinct subgroups in colorectal
cancers.

Clustering analysis based on CMS classification [43] of
organoids revealed significant correlation (Supplemen-
tary Fig. 5d), suggesting that the intrinsic molecular
subtypes could represent the distinct colorectal cancer
subgroups.

Variable cancer-intrinsic expression of immune-related
genes in CCOs

Next, we examined the expression of previously identi-
fied immune-related genes [57] (Fig. 4a). CCOs
expressed various immune-related genes at high levels
with a high standard deviation, including HLA class II
genes and genes related to immune checkpoint regula-
tion (Fig. 4b). A subset of CCOs overexpressed PDL1
(CD274), independently of total PDL1 expression levels
in tissue samples (Fig. 4c). Overall, PDL1 expression was
higher in primary tissues than in organoids (Supple-
mentary Fig. 6a) and tended to be higher in the k4
(mesenchymal) subgroup of organoids (Fig. 4d). Al-
though PDL1 expression in organoids did not correlate
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with expression in tissues, PDL1 expression in primary
tissues correlated with the degree of immune cell infil-
tration of primary tissues (Supplementary Fig. 6b).
These findings indicate that the main source of PDL1
expression in colon tumor tissues is inflammatory cells.
However, PDL1 expression varied among organoids; a
subset of organoids exhibited relatively high cancer-
specific expression of PDL1. The frequency of individual
mutated genes did not differ significantly between the
high (> median) and low (< median) PDL1 expression
groups (Fig. 4e). However, organoids showed different
gene expression patterns based on the level of PDL1 ex-
pression (Supplementary Fig. 6¢). Gene Ontology (GO)
enrichment analysis revealed that CCOs with high PDL1
expression were enriched in GO terms associated with
interferon signaling (Fig. 4f). CCOs with high PDL1 ex-
pression were found to be enriched in genes associated
with interferon o/y response pathways in a GSEA with
50 hallmark gene sets, whereas CCOs with low PDL1 ex-
pression tended to be enriched in genes associated with
the Wnt/B-catenin signaling pathway (Fig. 4g). These
findings suggest that alteration of pathways intrinsic to
cancer cells is associated with PDL1 expression levels
and presence of cancer cells with intrinsic alteration of
immune related pathway such as interferon signaling.

Impact of cancer-intrinsic immune-related gene
expression on survival

Next, we classified immune-related genes into four func-
tional categories, i.e., immune checkpoint stimulation, im-
mune checkpoint inhibition, HLA-I, and HLA-II (Fig. 5a).
The mean expression values of related genes were used to
represent the signature of each functional category.
Among them, cancer-intrinsic expression of HLA-I and of
immune checkpoint stimulators and inhibitors was not as-
sociated with survival in any percentile cut off (Fig. 5b).
However, the cancer-intrinsic expression of the HLA-II
signature (of the top five highly expressed genes, i.e.,
DRBI1, DQBI, DRA, DRB5, and DPA1, from CCOs), was
significantly associated with patient survival (Fig. 5c). As-
sessment of the prognostic impact of the expression of the
five individual HLA-II genes (for the top 5 HLA-II genes
from CCOs) also showed similar results (Supplementary
Fig. 7a). These findings indicate that cancer-cell intrinsic
HLA-II expression has a prognostic impact. We also ex-
plored the prognostic impact of HLA-II signature in
CCOs based on expression levels using 4-quantiles (Fig.
5d). The CCO patient group with no/very low HLA-II sig-
nature showed the worst prognosis. Interestingly, the
CCO patient groups with low, medium or high HLA-II
signatures showed good prognosis, irrespective of HLA-II
signature levels (Fig. 5d). These findings indicate that can-
cer intrinsic HLA-II expression is associated with favor-
able prognosis. However, higher intrinsic HLA-II
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signature level does not mean a better prognosis. Expres-
sion of HLA-II DR, DP, and DQ in CCOs correlated with
protein expression detected by IHC in cancer cells derived
from primary tissues (Fig. 5e). When patients were strati-
fied based on IHC data, patients with higher expression of
HLA-II showed better survival, although this was not sig-
nificant (Supplementary Fig. 7b). The prognostic impact
of HLA-II signature could not be identified upon using
primary tissues from two independent sets, i.e., our own
(Fig. 5f) and TCGA colorectal cancer data (Fig. 5g); this
suggests that cancer-intrinsic expression of HLA-II plays
an important role in predicting patient prognosis because
bulk cancer tissue contains TIM that includes antigen-
presenting cells such as mononuclear inflammatory cells,
which are the main centers of HLA-II expression, and the
HLA-II signal from those cells adds to the net HLA-II sig-
nature in the bulk cancer tissue.

A subset of CCOs with intrinsic immunogenic properties
is associated with improved patient survival

Among the immune-related genes expressed by CCOs,
HLA-DQBI exhibited the most variable expression (Fig.
4b) and appeared to have some clinical impact (Supple-
mentary Fig. 7a). Therefore, we performed unsuper-
vised clustering based on HLA-II genes, which revealed
a tendency to cluster based on HLA-II expression levels,
with the highest expression being of that of DRBI,
DQB1, DRA, DRB5, DPA1, and DPB1 (Fig. 6a). The
clustering pattern in our CCO cohort was similar to that
of an independent CCO cohort from nine patients [11]
(Fig. 6b). To better stratify the CCOs, we performed k-
means clustering and PCA on our CCO cohort and gen-
erated three groups, i.e., high HLA-II expression group
(HLA-II-k2 group), medium HLA-II expression group
(HLA-II-k1 group), and no/low HLA-II expression group
(HLA-II-k3 group) (Fig. 6¢c). The patients in the HLA-II-
k3 group had the worst prognosis, whereas those in the
HLA-II-k1 group and HLA-II-k2 groups were predicted
to have favorable survival (Fig. 6d). This finding is simi-
lar to our finding in Fig. 5d. Therefore, HLA-II-k1 group
and HLA-II-k2 group were integrated into a single
group classified as Higher HLA-II group while HLA-II-
k3 group was classified as Lower HLA-II group for fur-
ther analysis. The prognostic impact of the Higher HLA-
II group was independent of other clinicopathological
parameters, such as disease stage, age, intrinsic molecu-
lar subgroup (k1 subgroup), and immunogenic TIM
(Fig. 6e).

To better characterize the Higher HLA-II group,
KEGG pathway analysis was performed on the CCO
data. The results revealed that Higher HLA-II CCOs had
significant enrichment of intrinsic antigen processing
and presentation pathways (Fig. 6f), higher expression of
signatures associated with intrinsic immune checkpoint
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stimulation (Fig. 6g), and higher expression of intrinsic
HLA-I (Fig. 6h), despite the fact that the Higher HLA-II
group was identified based on clustering of HLA-II ex-
pression patterns. This group was not associated with
the total number of immune cells infiltration in the TIM
of primary tumor tissue (Fig. 6i and Supplementary
Fig. 8a). Thus, we refer to the Higher HLA-II group as
cancer cells with intrinsic immunogenic properties (Ca-
IIP) that have a clinical impact (Fig. 6j). To explore
underlying molecular characteristics of Ca-IIP, we com-
pared mutational profiles and gene set enrichment ana-
lysis (GSEA) in a hallmark gene set. There were no
significant differences in the mutational profiles of CCOs
with and without Ca-IIP (Fig. 6k). However, significantly
enriched cell-cycle regulatory pathways, including MYC
and E2F targets for CCOs with no Ca-IIP, were observed
(Fig. 61). The HLA-I supertype was not associated with
Ca-IIP (Supplementary Fig. 8b).

Cancer-intrinsic immuno-genomic alterations associated
with TIM phenotypes

To identify cancer cell-intrinsic immuno-genomic alter-
ations associated with the TIM, we classified TIM status
as immunogenic or non-immunogenic based on the
gene expression profiles of the 87 primary tumor tissues
and known expression patterns of marker genes; thus
the immunogenic TIM was divided into two additional
subtypes, i.e., Exhausted and Active (Fig. 7a and Supple-
mentary Fig. 9a). The TIM status was validated using
different methods, including CIBERSORT immune cell
profiling (Supplementary Fig. 9b), MCP immune and
stromal scores (Supplementary Fig. 9c), and the CD8"
T exhaustion score (as measured by the GSVA algo-
rithm) (Supplementary Fig. 9d). TIM status was not as-
sociated with Ca-IIP (Fig. 7b). Additionally, TIM status
was significantly associated with cancer cell-intrinsic ex-
pression of HLA-I (Fig. 7c and Supplementary Fig. 9e)
but not of HLA-II (Fig. 7d). Clinically, patients with the
active TIM had better survival than the other groups, al-
beit without statistical significance (Fig. 7e). Based on
the TIM status, all four tumors with MSI-H and one
hypermutated tumor were classified in the Exhausted
group (Fig. 7a). These tumors also had high CD8" T ex-
haustion scores (Fig. 7f). With respect to nonsynon-
ymous mutations, there were differences in the
frequency of NFI and remodeling genes SMARCA4,
KMT2A, and ATRX based on TIM class (Fig. 7a). There
were no significant differences in CNV (Fig. 7a and Sup-
plementary Fig. 9f) or fusion number (Supplementary
Fig. 9 g) based on TIM status.

Next, we examined genes that were differentially
expressed in the different TIM subgroups (Active,
Exhausted, and Desert) and found no significant differ-
ences at the single gene level among the TIM subgroups
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in the organoids (one-way ANOVA test, FDR > 0.25 for
all tested genes) (Supplementary Fig. 10). Therefore,
we focused on signaling pathways and found that the
Wnt/B-catenin signaling pathway was enriched in the
Desert (non-immunogenic) group (Fig. 8a and Supple-
mentary Fig. 1la-c). The mutation status of APC, a
major component of the Wnt/B-catenin signaling path-
way, was associated with the Desert group (Fig. 8b and
Supplementary Fig. 11d-f). The KRAS (biallelic) muta-
tion was more common in tumors with decreased num-
bers of cytotoxic lymphocytes (as determined by MCP)
(Fig. 8c) or CD8" T cells (as determined by CIBER-
SORT) (Supplementary Fig. 12a). These biallelic KRAS
mutations tended to occur in non-immunogenic cancers
(Supplementary Fig. 12b-d). Colon cancers with the
KRAS mutation showed upregulated expression of
CXCL3 and PD-L1 in cancer cells, decreased granzyme
B levels in cancer tissues, and increased M2 macrophage
numbers in the TIM (Supplementary Fig. 12e), sup-
porting previous findings from a report of a model
showing the characteristics of cancers with KRAS muta-
tions [58]. Similarly, the 7P53 GOF mutations were
enriched in tumors with low CD8" T cell infiltration
(Fig. 8d and Supplementary Fig. 13a-c). The unfolded
protein response pathway was enriched in the Exhausted

group (Fig. 8e and Supplementary Fig. 13d). We also
found that the FBXW7 mutation was more common in
the Exhausted group (Fig. 8f), and that it correlated sig-
nificantly with CD8" T cell exhaustion (Fig. 8g) and the
unfolded protein response pathway, based on GSVA
(Fig. 8h). Multivariate logistic regression analysis re-
vealed that the association between immuno-exhaustion
and FBWX7 mutation was independent of the hypermu-
tated cancer phenotype including MSI-H (Fig. 8i). The
FBXW7 mutation was one of the most common muta-
tions associated with exhausted TIM (Fig. 8f) and en-
richment of genes associated with the unfolded protein
response pathway (Fig. 8). Therefore, we screened the
Achilles project dataset to identify candidate targets of
synthetic lethality in FBXW7-mutated tumors. We found
that CTNNBI inactivation is a potential target in tumors
with the FBXW7 mutation (Supplementary Fig. 14a).
Next, we selected compounds associated with the Wnt/
B-catenin pathway and used CCLE data to analyze re-
sponses to approximately 200 drugs. We found that can-
cer cell lines harboring the FBXW7 mutation had
significantly higher sensitivity to the PPAR inhibitor,
FH535, than cell lines without the mutation (Supple-
mentary Fig. 14b). Furthermore, only the colorectal
cancer type yielded significant results in the synthetic
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lethality model (Supplementary Fig. 14c). We validated = However, the lack of a patient-derived cancer cell model
the induction of lethality as the PPAR inhibitor for the that recapitulates the primary cancer means that rela-
FBXW7 mutation using our CCOs (Supplementary tively few studies have investigated the intrinsic im-
Fig. 15), thereby demonstrating the utility of CCOs as a  munogenic properties of cancer cells and their clinical

preclinical model. significance. Several studies have shown that CCOs
maintain the genetic diversity and treatment response
Discussion characteristics of the primary tumor [12—-15]. Our study

Tumors with abundant infiltrating T cells are referred to  revealed that CCOs recapitulate the global gene expres-
as “immunogenic” or “hot”; these tumors are associated  sion profiles and pathways that characterize the tumors.
with a favorable prognosis and better response to im-  Although a limited number of genes were evaluated, we
mune checkpoint inhibitor-based therapy [59, 60]. confirmed that mutations in known major driver genes,
Therefore, many studies have focused on the TIM. such as TP53, KRAS, APC, and FBXW7 were maintained
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in the CCOs. Furthermore, we also investigated cancer-
intrinsic immunogenomic characteristics along with
clinical features in a large CCO sample set.

Cancer organoids enable the identification of signa-
tures associated with cancer-intrinsic immuno-genomic
alterations, which are often masked when using bulk
tumor tissue due to the signatures within the TME. In
this study, we identified Ca-IIP using a large number of
CCOs. Patients with Ca-IIP showed an excellent progno-
sis with respect to overall and recurrence-free survival,
with HLA-II being the key intrinsic factor associated
with patient survival. We found significant correlation
between the expression of HLA-II mRNA in CCOs and
HLA-II protein expression in cancer cells from primary
tissues. However, the impact of HLA-II IHC data in pri-
mary tumor tissue on survival was not significant; this
might be explained by the discrepancy between the
measurement strategies used in [HC and RNA sequen-
cing; 1) different antibody targets used for HLA-II, 2)
tissue microarray (2 mm?x 2 cores) used for IHC may
not represent the entire cancer tissue, 3) low resolution
of IHC-based expression measurement (categorical
measurement) compared to the continuous RNA se-
quencing results, and 4) small sample size resulting in
low statistical power. Indeed, a previous study that mea-
sured the expression of HLA class II molecules using
IHC in approximately 1000 colorectal cancer tissue sam-
ples has shown that the expression of HLA class II anti-
gens in CRC cells was significantly associated with a
favorable clinical course [61]. The results from our study
suggest that identification of patients based on cancer-
intrinsic expression of HLA-II mRNA is a more power-
ful predictor of survival than identification based on in-
trinsic expression of HLA-I, intrinsic immune
signatures, intrinsic cancer signaling pathways, or TIM
status.

Recently, the TIM has received significant attention
due to its potential relationship with clinical outcome
and response to immunotherapy. As such, we classified
colorectal cancers into three microenvironment groups
based on immune cell and stromal signatures in primary
tumor tissues. Cellular constituents of the TIM are more
likely to be induced by intrinsic genomic alterations in
tumor cells than by germline genomic characteristics of
the host. We identified several genomic alterations in
CCOs that were associated with tumor TIM class. All
MSI-H tumors belonged to the Exhausted group, which
may be associated with a good response to PD1/PDL1
inhibitors because PD1 is an important marker for CD8"
T cell exhaustion. In addition, the Desert group showed
activation of Wnt/B-catenin signaling and high expres-
sion of Wnt pathway target genes, which is consistent
with results from recent studies showing that the activa-
tion of Wnt/B-catenin signaling results in immune
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exclusion [3, 62, 63]. Our data also suggest that cancer-
intrinsic genetic alterations, including those in KRAS,
TP53, and FBXW?7, are linked to TIM status.

Conclusions

The CCOs examined herein recapitulate the gene ex-
pression signatures, genetic mutations, and histopatho-
logical features of their respective primary tumors.
These CCOs provide valuable data for the intrinsic
immuno-genomic classification of colorectal cancers.
Studying cancer cells with known intrinsic immunogenic
properties will provide unique opportunities for the de-
velopment of novel therapeutic approaches and optimal
selection of patients most likely to benefit from targeted
therapy.
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Additional file 1. Supplementary Table 1. Characteristics of patients.

Additional file 2 Supplementary Fig. 1. (A) Histology and
immunohistochemistry of the established CCOs and the corresponding
primary tumors. (B) Distribution of variant allele fraction (VAF) of detected
variants in the MSI-high group and the MSI-low/MSS group. CCO, colo-
rectal cancer organoid; MSI, microsatellite instability; MSS, microsatellite
stable; H&E, hematoxylin and eosin.

Additional file 3 Supplementary Fig. 2. (A) Spearman’s correlation of
variant allele fractions (VAFs) between organoid RNA and organoid DNA.
(B) Characteristics of variants detected in organoid DNA and not in tissue
RNA; the variants detected in organoids only were associated with low
read depth in primary tissue sequences or subclonal events based on
organoid sequencing (Wilcoxon rank-sum test). (C) Spearman’s correlation
of VAFs between organoid DNA and tissue RNA. (D) Spearman’s correl-
ation of VAF in each gene between organoid DNA and tissue RNA.

Additional file 4 Supplementary Fig. 3. (A) Profiles of copy number
variations with microsatellite instability (MSI) information in the 87 CCOs.
(B) Circos plot of the detected fusions in the 87 CCOs. (C) HLA class |
molecular typing and its frequency in 87 CCOs. (D) Frequency of the HLA
supertype in 87 CCOs. CCO, colorectal cancer organoid.

Additional file 5 Supplementary Fig. 4. (A) Spearman’s correlation
coefficient matrix of CCOs versus primary tumor tissues. (B) Total immune
score and stromal score of CCOs versus primary tumor tissues. (C) Genes
that are differentially expressed between CCOs and primary tumor
tissues. (D) Spearman correlation of the expression of differentiation or
stem cell markers in CCOs versus primary tumor tissues. CCO, colorectal
cancer organoid; TIM, tumor immune microenvironment.

Additional file 6 Supplementary Fig. 5. (A) Ki-67 immunohistochemis-
try in the primary tumor tissues and its interpretation by a pathologist
and by image analysis. (B) Significant correlation of the Ki-67 proliferation
index between the pathologist’s result and image analysis. (C) No correla-
tions in Ki-67 mRNA expression between bulk primary tissues including
tumor microenvironment and cancer cells and CCOs. (D) Comparison of
our molecular subgrouping and CMS classification in CCOs (Chi-squared
test). CCO, colorectal cancer organoid.
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Additional file 7 Supplementary Fig. 6. (A) PDL1 (CD274) expression
levels in CCOs and primary tumor tissues. (B) PDL1 expression in primary
tumor tissue was correlated with the expression of immune cell markers
such as CD8A, CD68, and CD4, but was not correlated with PDL1
expression in CCOs (Spearman correlation test). (C) Differentially
expressed genes in CCOs based on cancer-intrinsic (organoid) PDLT ex-
pression level. CCO, colorectal cancer organoid; TIM, tumor immune
microenvironment.

Additional file 8 Supplementary Fig. 7. (A) Prognostic impact of
gene expression in HLA class Il in CCOs. (B) Patient survival based on HLA
class Il expression level using immunohistochemistry (IHC) in cancer cells
from primary tissue (log-rank test).

Additional file 9 Supplementary Fig. 8. (A) Immune cell profiles of
CIBERSORT and MCP based on the Ca-IIP group (Wilcoxon rank-sum test).
B cells naive (CIBERSORT) score were lower in the Ca-lIP group. However,
B lineage based on MCP score was not significant. (B) HLA class | super-
type frequency based on CA-IIP group. Ca-IIP, cancer cells with intrinsic
immunogenic properties.

Additional file 10 Supplementary Fig. 9. (A) Classification of the TIM
using primary cancer tissue. (B) Immune cell types from CIBERSORT based
on the TIM class (Wilcoxon rank-sum test). (C) Immune cell types using
MCP score based on the TIM class (Kruskal Wallis test). (D) Validation of
the exhausted TIM class based on CD8+ T cell exhaustion score using
GSVA analysis (Wilcoxon rank-sum test). (E) Significant correlation of HLA-I
expression in CCOs versus primary tumor tissues (Spearman correlation
test). (F) Fraction of copy number variation (CNV) based on the TIM class
(Kruskal Wallis test). (G) Fusion number based on the TIM class (Kruskal
Wallis test). TIM, tumor immune microenvironment; CCO, colorectal can-
cer organoid.

Additional file 11 Supplementary Fig. 10. No significant differential
gene expression in organoids based on the tumor immune
microenvironment (TIM) class of primary tissues (FDR g > 0.25 by one-way
ANOVA test).

Additional file 12 Supplementary Fig. 11. (A) Pathway analysis using
tissue RNA sequence data based on the tumor immune
microenvironment (TIM) class. (B, C) Significance of Wnt/B-catenin
signaling pathway in the non-immunogenic group using GSVA analysis
(Wilcoxon rank-sum test). (D) APC mutation status based on the TIM class.
(E) Significance of biallelic APC mutation and TIM class (Fisher's exact test).
(F) Expression of target genes belonging to the Wnt/beta-catenin path-
way (Wilcoxon rank-sum test).

Additional file 13 Supplementary Fig. 12. (A) Enrichment of KRAS
(biallelic) mutations in tumors with decreased CD8+ T cells (10,000
randomly permutated p values and one-sided Wilcoxon rank sum test).
(B) Increased frequency of KRAS biallelic mutation in non-immunogenic
(immuno-desert TIM) tumors (Fisher's exact test). (C, D) KRAS mutation
status and TIM. (E) Characteristics of gene expression and infiltrating im-
mune cell types based on the KRAS mutation status (Spearman’s correl-
ation test). TIM, tumor immune microenvironment.

Additional file 14 Supplementary Fig. 13. (A) Frequency of TP53
gain-of-function (GOF) mutation based on the tumor immune micro-
environment (TIM) class, showing a high frequency of TP53 GOF muta-
tions in the Desert group (p = 0.033, Fisher's exact test). (B) Association
between TP53 GOF mutations and decreased CD8+ T cell (10,000 random
permutation test and Spearman’s correlation test). (C) Tendency for the
exclusive occurrence of TP53 and KRAS mutation. (D) Enriched unfolded
protein response pathway (GSVA score) in the immune-exhausted group
(Wilcoxon rank-sum test).

Additional file 15 Supplementary Fig. 14. (A) Screening of synthetic
lethality target of FBXW7 mutation using the DepMap dataset. (B, C)
Sensitivity of the FH535 molecule in colorectal cancer cell lines with
FBXW?7 mutation (Wilcoxon rank sum test).

Additional file 16 Supplementary Fig. 15. (A) FH535 induced cell
death and destroyed the organoid structure in the two CCOs with FBXW7
mutation (AMC-17CT-019 and AMC-17CT-048). (B) Sensitivity of the FH535
molecule in CCOs with FBXW7 mutation (Wilcoxon-rank sum test). (C)
Sensitivities of various WNT signaling drugs targets showing non-

significant responses to drugs targeting WNT pathways in colorectal can-
cer cells with FBXW7 mutation. (D) CCOs with FBXW7 mutation also
showed non-significant responses to ICG-001, which also targets the
WNT/B-catenin pathway, suggesting that FH535 has a different mechan-
ism action in colorectal cancers harboring the FBXIW7 mutation. CCO,
colorectal cancer organoid.
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