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Abstract 

The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms 
for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational 
approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the inte-
grated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of 
medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 
protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic 
applications, have also been developed for several other pathological conditions, such as cardiovascular disease and 
tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input 
to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much 
scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a 
focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery 
methods that may aid the development of future therapeutics of this nature.
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Background
Harnessing the potential of apoptosis, as a strategic 
approach for the eradication of cancer cells, has been 
an area of intense activity over the last 30 years, rang-
ing from the implementation of death inducing ligands 
and therapeutics, to engineering synergistic chemical 
antagonists [1, 2]. What originally started as research 
aimed at unveiling the mechanistic input of extrinsic and 
intrinsic signaling pathways in cell demise, has indeed 
developed towards how such pathways can be therapeu-
tically exploited as the findings have transitioned from a 
basic- to applied- research setting. Underpinning such 
developments have unambiguously relied on defining an 

ever-growing number of molecular signaling networks 
and their detailed regulatory crosstalk in defining poten-
tial axes of regulation that may be amenable for thera-
peutic intervention [3].

Herein, one critical regulatory event central to trigger-
ing apoptosis is the activation of Mitochondrial Outer 
Membrane Polarization (MOMP) and is the cornerstone 
of intrinsic pathway activation. How this is achieved at 
the molecular level, and what factors regulate the thresh-
olds that exist in achieving MOMP, thereby predisposing 
cells to undergo apoptosis, has been the basis of many 
excellent studies that have either overlapped or con-
verged on the importance of the Bcl-2 homology (BH) 
-domain containing proteins [4].

Briefly, the Bcl-2 proteins can be broadly categorized as 
acting in either a pro-apoptotic or anti-apoptotic manner. 
Whilst these groups act directly in driving or diminishing 
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apoptosis, a third group of proteins, which are function-
ally and structurally unique, and when over-expressed 
can sensitize cells to biochemical cues that induce apop-
tosis, are the BH3-only proteins (or sensitizer proteins). 
From these three groups, the BAX (pro-apoptotic) and 
Bcl-2, Bcl-xL or Mcl1 (anti-apoptotic) proteins have 
gained the most attention over the recent decades, based 
on their deregulated expression, significance in the devel-
opment of a number of cancers and their responsiveness 
to therapeutics [5]. From these, the importance of BAX 
protein deregulation in cancer development can stem 
from the loss-of-function genetic frame-shift mutations, 
which contribute to the prevalence of a number of solid 
tumors and leukemias [6–8]. Conversely, in the instance 
of the Bcl-2 and Bcl-xL anti-apoptotic proteins, their 
genetically deregulated-over-expression can give rise to 
similar malignancies, such as B-cell lymphoma, prostate 
cancer, non-small cell lung cancer, Acute lymphoblastic 
leukaemia and breast cancer [9–12].

As an alternative regulatory mechanism, protein sub-
cellular localization and the coordinated manner in 
which Bcl-2 protein family members can be regulated by 
factors from the nucleus, lysosome and mitochondria, 
has also taken on greater significance over the recent 
years [13]. Synergistically, the structural composition 
of the Bcl-2 proteins has unveiled how such proteins 
come to reside at specific subcellular compartments, and 
whether each member is regulated by other group mem-
bers of this family through protein-protein interactions 
(Table 1) [14].

In large, the Bcl-2 proteins are composed of conserved 
BH1-4 domains and in some instances a transmembrane 
domain (Fig. 1) [4]. Here, the key structural component 
of intrinsic importance, which is present in all of the 

pro-apoptotic Bcl-2 family protein members, is unques-
tionably the BH3 domain, which is a structure composed 
of ~ 15 amino acids from α-helix 2, and which inter-
acts with the hydrophobic pocket structure formed by 
α-helices 2-5 of the anti-apoptosis proteins, such as Bcl-2 
protein (Fig. 1) [15].

Mechanistically, the interplay between all three groups 
of proteins, based on their relative abundance in the pres-
ence of biochemical activation cues, determine whether 
the two key intermediates BAX and BAK successfully 
mediate the formation of a Mitochondrial Pore Complex 
(MPC), denoted by enlarged mitochondrial cristae and 
the ultimate release of cytochrome c as a prerequisite 
to caspases -3, -7 and -9 activation and finally followed 
by DNA fragmentation [16, 17]. Part of this mechanism 
incorporates the complex regulatory input from TP53 
activation and the key mitochondrial proteins NOXA, 
PUMA and Smac/DIABLO [18, 19]. As a relatively weak 
and indirect activator of apoptosis, BH3-only NOXA can 
bind (and inhibit) the anti-apoptotic regulators Mcl1 and 
Bcl-2A1, thus preventing their suppression of BAX- and 
BAK- protein activation [20–22]. Alternatively, NOXA 
has also been reported to bind BAX and activate apop-
tosis in the absence of a BIM, BID and Bcl-xL expres-
sion-dependent manner, thereby regulating apoptosis 
directly [23, 24]. Similarly, BH3-only PUMA can induce 
apoptosis through the direct activation of BAX or BAK 
[25]. As a negative regulator of apoptosis, Mcl1 has been 
widely reported as being overexpressed in a number 
of cancers such as lung and breast [26, 27], and which 
can be destabilized by NOXA, through the ubiquitina-
tion pathway [28, 29]. As an integral regulator of apop-
tosis, PUMA can also mediate activation of apoptosis 
through a direct association with Mcl1, that is reversible 

Table 1  The Bcl-2 protein family members can be sub-grouped into pro-apoptotic (Pro-), anti-apoptotic (Anti-) and sensitizer (Sen-) 
members, which originate from distinct genetic loci and encode proteins of varying amino-acid (aa) length and molecular weight (in 
kilodaltons, kDa). Each member can be localized in the cytoplasm (C), mitochondria (M), endoplasmic reticulum (ER) or the nucleus (N) 
and can be regulated through its interaction with other protein family members through protein-protein interactions

Protein Apoptosis Gene Size (kDa) Location Protein Partners

BAX Pro- 19q13.33 192aa (21.18) C, M, N, ER BAK, Bcl-2,Bcl-xL,Mcl1, BID, BIM, NOXA

BAK Pro- 6p21.31 211aa (23.40) M BAX, Bcl-2, Bcl-xL, Mcl1, BID

Bcl-2 Anti- 18q21.33 239aa (26.00) C, M, N, ER BAX, BAK, Bcl-xL, BID, BIM, BAD, PUMA, NOXA

Bcl-xL Anti- 20q11.21 233aa (26.04) M, C BAX, BAK, Bcl-2, BID, BIM BAD, PUMA

Mcl1 Anti- 1q21.20 350aa (37.33) C, M, N BAX, BAK, BID, BIM, PUMA, NOXA

BID Pro-/Sen- 22q11.21 195aa (21.99) C, M BAX, BAK, Bcl-2, Bcl-xL, Mcl1

BIM Pro-/Sen- 2q13.00 198aa (22.17) C, M BAX, Bcl-2, Bcl-xL, Mcl1,

BAD Pro-/Sen- 11q13.10 168aa (18.39) C, M Bcl-2, Bcl-xL

PUMA Pro-/Sen- 19q13.32 193aa (20.53) M Bcl-2, Bcl-xL, Mcl1,

NOXA Pro-/Sen- 9q34.30 476aa (50.93) C, M, N BAX, Bcl-2, Mcl1,

SMAC Pro-/Sen- 12q24.31 239aa (27.13) C, M xIAP1
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upon NOXA expression (through it binding Mcl1), thus 
releasing PUMA by a ‘catch and release’ mechanism [30, 
31]. Consequently, from a therapeutic standpoint, Mcl1 
expression and regulation have taken on increasing lev-
els of importance, particularly from the contribution 
they make in offering drug resistance to several cancer 
therapeutics [32–35]. Like NOXA [36] and PUMA [37, 
38], Smac/DIABLO [39] is also resident on the cytoplas-
mic face of the MOM, and which uniquely allows it to 
fulfill its role as a positive activator of caspases, through 
it binding and inhibiting the Inhibitor of Apoptosis Pro-
teins (IAPs), from the extrinsic and intrinsic arms of the 
apoptosis pathway [40].

Collectively, the functional significance of such a small 
handful of regulatory proteins on cell fate cannot be 
underplayed, as neither can their mechanistic regula-
tion. While some facets of the latter may be steeped in 
controversy, many aspects of the BH3-domain contain-
ing proteins (and their regulation) have nevertheless 
been fully harnessed throughout the initial formulation 
of BH3-mimetics, the emerging Smac-mimetics or the 
Mcl-inhibitors, and their applications as potential cancer 
therapeutics, thereafter (Fig. 2).

The principles of BH3-mimetics are mechanisti-
cally founded on disrupting the interaction of the 

pro-apoptotic BH3 domain with the hydrophobic pocket 
of the anti-apoptotic Bcl-2 proteins (such as Bcl-2, Bcl-xL 
or Mcl1), thus permitting oligomerized BAX (or BAK) to 
form the MCP [1]. While this approach is largely depend-
ent on labor-intensive rational therapeutic design strat-
egies, the functional significance of such an approach is 
rewarded with yielding antagonists that have high effi-
cacy, with demonstrated effectiveness at nano-Molar 
(nM) concentrations, and which have the potential to 
be used as either single- or combined- therapeutics [5]. 
Whilst the founding members of the BH3-mimetic drugs 
did exhibit multiple protein targets, the subsequent pre-
clinical studies that have arisen from such findings have 
identified a number of additional protein targets. Con-
sequently, when targeted collectively with single thera-
peutics using combined therapeutic regimens at the 
pre-clinical and clinical levels, such therapeutics are 
showing a very high level of effectiveness and generating 
a growing level of interest in how drugs of this nature can 
be developed further for greater efficacy.

Synonymously, as progress in therapeutic devel-
opment has come into fruition, so have the delivery 
methods that can be utilized for efficient drug deliv-
ery to offer maximum effects. Of late, such approaches 
include the use of self-assembling nanofibers and 

Fig. 1  The BH- and helical- domain composition of selected Bcl-2 family pro-apoptotic (red boxes), anti-apoptotic (blue boxes) and BH3-only 
(green boxes) members. The amino acid sequences of the human BH3-domains from BAX and BAK are highlighted (top left), below which are 
shown the amino acid sequences of the alpha helices 2–5 from the human Bcl-2 protein. For each of the proteins, the transmembrane domain is 
highlighted in orange and BH1–4 domains are respectively highlighted in blue, black, red and green for the relevant proteins
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micelles. The importance of such emerging approaches 
is highlighted by them offering greater scope in permit-
ting the development and delivery of novel therapeutics 
that may otherwise be limited by their solubility and 
availability to cancer cells.

As seen in the context of most cancer-related diseases, 
the development of BH3-mimetics has been driven by 
them inducing cell death through apoptosis, a morpho-
logically distinct form of death followed by phagocytosis 
[41]. Herein, we highlight the importance of this thera-
peutic paradigm, how it has evolved over time through 
it being applied in targeting additional key regulatory 
intermediates from the intrinsic apoptosis pathway. As 
this has given rise to a number of other potential thera-
peutics, we describe them in the context of how effective 
they are as single- or combined-therapeutics in preclini-
cal and clinical models. In doing so, we also address the 
challenges that have arisen, and how some of them can 
be addressed through key emerging delivery and target-
ing approaches, so that novel therapeutics of this nature 
can be given greater effect for the future.

Main text
Basic research and mimetics: a rational drug design 
strategy
With the contextual origins of BH3-mimetics laying with 
certain intrinsic pathway intermediate proteins of apop-
tosis, several approaches have been adopted to develop 
such therapeutics through specific aspects of rational 
drug design. For such purposes, the BAX/Bcl-2 regula-
tory axis has primarily served as a strong foundation to 
build upon, with particular focus between the 15-amino 
acid BH3-domain spanning α-helix 2 of BAX [15], and 
the hydrophobic pocket of Bcl-2 (spanning α-helices 
2-5, Fig.  1), for the development of small peptides- and 
small molecule- inhibitors (SMIs). In furthering such 
developments, the categorization of genuine mimetics 
through ‘BH3 profiling’, and whether the potency of can-
didate agents can induce apoptosis and reduce cell viabil-
ity in the absence of BAK or BAK expression has also 
offered good leads in defining therapeutic -authenticity, 
-specificity and any off-target effects [42–44]. Based on 
such principles, what has arisen is the diversification of 

Fig. 2  The regulation of apoptosis by the BAX protein through mitochondrial outer membrane permeabilization (MOMP), and the modulation 
of this key steps by therapeutics. Key negative regulator Bcl-2, Bcl-xL and Mcl1 proteins (solid oval green boxes) for BAX (solid orange box) and 
their apoptosis inducing effects by cytochrome c release (solid yellow box and circles), caspase protein activation (solid red box) and apoptosis 
(solid purple box) are shown. The mimetics/inhibitors that can target anti−/pro-apoptotic protein interactions are highlighted as BH3-mimetics 
(outlined red box, red dots) and Mcl1 inhibitors (outlined green box, green dots), which either induce apoptosis of cells as mono-therapeutics 
or sensitize them to such effects during combined therapeutic targeting. The blue solid boxes (and small circles) highlight mitochondrial Smac/
DIABLO, NOXA and PUMA, which bind the Inhibitor of Apoptosis Proteins (small green circles, IAPs) and the interactions of which can be inhibited 
by Smac-mimetics (blue outlined box and blue dots)
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potential antagonists (in both manner and form) and 
their on-going development and applications in modulat-
ing the apoptosis pathway.

Classically, BH3-mimetics have incorporated engi-
neered peptide inhibitors derived from the BH3 domain 
of the pro-apoptotic activators or sensitizer proteins and 
designed to bind the hydrophobic groove of their cognate 
anti-apoptotic proteins [45–47]. Such, unprecedented 
developments dispelled the belief that such protein-pro-
tein targets were ‘undruggable’ at that juncture. While 
additional criteria of importance included high-affinity 
binding to targets (within nM ranges) and a dependency 
on BAK or BAX induced apoptosis [48], some thera-
peutic peptides were observed to be toxic, unstable and 
where penetrability was relatively low [49]. However, 
some candidates emerged to have great potential in act-
ing as apoptosis inducers or sensitizers, either as single 
agents or in a combined therapeutic approach. Born from 
such studies were the design and development of small 
molecule inhibitors, as shown for ABT-737 in Fig. 3 [50].

Through implementing a number of alternative 
approaches, either exclusively or in a combined man-
ner, through utilizing natural library screening, peptide 
therapeutics and structure-based design, a new era in 
therapeutic targeting has arisen, with most of it focus-
ing on the intrinsic arm of the apoptosis pathway for 
the treatment of hematological or solid cancers [51–57]. 
As highlighted in Table 2, this field has diversified from 
the original BH3-mimetics (designed to target the anti-
apoptosis regulators), to the development of Mcl1-based 
inhibitors (to help overcome Mcl1-derived resistance), 
and beyond towards the development of Smac-mimetics, 
which more specifically target the Inhibitors of Apoptosis 
Proteins (IAPs).

While some agents show off-target effects, such effects 
are being harnessed advantageously, through devis-
ing novel and combined treatment regimens, based on 
a common vision shared by the scientific communi-
ties from the academic and private sectors. Addition-
ally, most classes of therapeutics exhibit a broad protein 
target range (with non-specific off targets), whilst some 
have greater specificity (with minimal off-target effects), 
as seen for Venetoclax and Gossypol (for BH3-mimetics), 
and numerous agents for Smac-mimetics and Mcl-inhib-
itors (Table 2).

Consequently, such efforts have given rise to several 
promising biological agents, reported to induce the death 
of several cancer cell types in pre-clinical models, and 
some of which are currently being driven through clinical 
trials as very promising anti-cancer therapeutics. In the 
following sub-sections, we aim to review key aspects of 
the research efforts published over the last 20 years. As 
an active area of research that has intensely diversified on 
a number of fruitful tangents, we aim to initially describe 
the founding members of the BH3-mimetics group and 
how the outputs from their evaluation have evolved to 
give rise to promising therapeutics. We will then turn our 
attention to how the principles of BH3-mimetics design 
and targeting have been applied to spawn a number of 
promising mimetics derived from the NOXA, PUMA 
and Smac proteins. Lastly in this subsection, we focus on 
the most encouraging BH3-mimetic (Venetoclax) and the 
emerging Mcl-1 inhibitors, which are reportingly show-
ing notable pre-clinical outcomes.

Bcl‑2 protein targeting mimetics
Cell fate is determined by the balance of Bcl-2 anti-
apoptotic protein expression in relation to pro-apoptotic 

Fig. 3  Co-crystal structure of Bcl-xL and small-molecule inhibitor ABT-737. The interaction of alpha-helices (H) 1-9 from Bcl-xL (pink), in combination 
with ABT-737 (stick diagram) are highlighted in the presence of a chloride ion (green circle) and glycerol (unlabeled lower stick) in the left panel. 
Bcl-xL α-helices 2-5 (H2-H5) are highlighted in pink and yellow (middle panel) and in the right panel, are shown when viewed from above
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BH3 proteins levels, highlighted by the discovery of Bcl-2 
being the first anti-apoptotic overexpressed oncogene, 
as seen in follicular lymphoma [79–81]. Subsequently, 
17–18 member proteins have been reported to share at 
least one of the four Bcl-2 homology domains (BH1-4), 
in a family of proteins that exhibit anti- or pro- apop-
totic expression-dependent effects [82]. As a protein 
highly expressed in a number of B-cell lymphomas [83, 
84], Bcl-2 is expressed in Chronic lymphocytic leukaemia 
(CLL) [85], Mantle cell lymphoma (MCL) [85–87], Multi-
ple myeloma (t11;14) (MM) [88] or solid tumors [83], and 
(in a similar manner to Mcl1 expression) is critical for cell 
survival [89]. Here, high levels of pro-apoptotic protein 
expression had also been reported [90], thus potentially 
offering the induction of potent cell death by mono-
therapeutic BH3-mimetics acting through disrupting the 
BH3-domain-hydrophobic groove interaction. Mechanis-
tically, this is permitted through the localization of func-
tionally equivalent BAX or BAK proteins [91] to the outer 
membrane of the mitochondrion through their α-helix 9 
motifs [92–95], where they can homo-oligomerize and 
mediate the formation of the MPC, thereby inducing the 

release of cytochrome c and other apoptotic inducing or 
regulatory factors [96, 97].

‑ABT‑737
The BH3-mimetic ABT-737, was designed using an NMR 
structure-based approach, which targeted the BH3-
binding hydrophobic groove of Bcl-2, Bcl-xL (Fig. 3) and 
Bcl-w (with a Ki of 36 nM), whilst binding minimally to 
Mcl1 or A1 [50, 98, 99]. Its effectiveness was observed 
against cell lines and patient samples derived from lym-
phoma, leukemia and in senescence of solid tumors in 
single [51, 100] or combined therapy approaches [101–
103]. However, resistance against the death-inducing 
effects of ABT-737 was reported in pre-clinical models, 
mainly due to upregulated Mcl1 protein expression in 
certain cancer cell types, and the abrogation of which 
sensitized cells to death, as seen in normal mouse embry-
onic fibroblast [99, 104], prostate cancer [34] and breast 
cancer cells [35]. As a potential mechanism for ABT-737 
resistance in pre-clinical models, the significance of such 
a mechanism in clinical studies remains to be explored in 
greater detail.

Table 2  Promising mimetics and inhibitor therapeutic agents for cancer

BH3-mimetics (-M), Smac-mimetics (-M) and Mcl1 inhibitors (-I) are highlighted along with the techniques utilized for their discovery or origins. For each drug, we 
show its cognate target and off-target proteins or effects, its developer and the publication describing its development (Ref )

Agent Type Origins Target Off-Target Developer Ref

ABT-737 BH3-M Structure-based design,
BAK peptide

Bcl-2, Bcl-xL – Abbott Labs. (IL, USA) [58]

Navitoclax BH3-M ABT-737 Bcl-2, Bcl-xL, Mcl1 Mcl1 (weak) Abbott Labs. (IL, USA) [59]

Gossypol
(AT-101)

BH3-M Structure-based design,
BIM peptide

Bcl-2, Bcl-xL, Mcl1 – University of Michigan (MI, US) [60]

Obatoclax BH3-M In silico docking studies Bcl-2, Mcl1 Bcl-xL University of Montreal (CAN) [61]

Venetoclax BH3-M Navitoclax Bcl-2 Bcl-xL (weak) AbbieVie (IL, USA) [62]

Compound 3 Smac-M Smac (AVPI/AVPF
peptide sequence)

xIAP, cIAP1/2 NF-κB activation University of Texas (TX, USA) [63]
[64]

APG1387 Smac-M Smac (AVPI peptide sequence) xIAP, cIAP1/2 – University of Michigan (MI, USA) [65]

AT-406 Smac-M Structure-based design xIAP, cIAP1/2 – University of Michigan (MI, USA) [66]

Compound A Smac-M Small molecule screen xIAP, cIAP1/2 – University of Texas (TX, USA) [63]

LC161 Smac-M Structure-based design xIAP, cIAP1/2 – Dana-Farber CI (MA, US) [67]

SM-164 Smac-M Structure-based design xIAP – University of Michigan (MI, USA) [68]

Birinapant Smac-M Smac (AVPI peptide sequence) cIAP1 xIAP (weak) Duke University (NC, USA) [69]

A1210477 Mcl1-I High throughput screen Mcl1 – AbbieVie (IL, USA)
Genetech (CA, US)

[70]
[71]

AMG-176 Mcl1-I Structure-based design,
High throughput screen

Mcl1 Bcl-2, Bcl-xL (minimal) Amgen (CA, USA) [72]

AZD-5991 Mcl1-I Structure-based design Mcl1 – AstraZeneca (MA, US) [73]

S63845 Mcl1-I In-silico modelling Mcl1 – Institut de Recherches Servier 
Oncology (FRA)

[74]

MIM1 Mcl1-I Small molecule screen Mcl1 – Dana-Farber CI (MA, USA) [75]

VU661013 Mcl1-I Structure-based design Mcl1 BIM-Mcl1 destabilization Vanderbilt University (TN, USA) [76]
[77]

GDC-0941 Mcl1-I In-silico modelling PI3Kα/δ, Mcl1 – Piramed Pharma (UK) [78]
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Other aspects of drug resistance were also derived 
from the stress protein Bcl-2-associated athanogene 3 
(BAG3), which could stabilize Mcl1 expression, thus 
contributing to ABT-737 resistance in breast cancer 
and prostate cells [105]. Conversely, Mcl1 protein lev-
els were observed to be destabilized when A549 and 
95-D cells were treated with Nedaplatin, allowing ABT-
737 to induce death with greater efficacy [106], thus 
highlighting the effectiveness of Mcl1 co-inhibition 
in a viable combined therapeutic strategy, and which 
was confirmed through ARC-mediated transcriptional 

down-regulation of Mcl1 expression [107]. Similar 
ABT-737-enhancing effects have also been reported 
upon Mcl1 inhibition in retinoblastoma- [108], mela-
noma- [109], breast-, prostate-, colon- [110] and liver- 
cancer cells [111]. While such findings, suggestive 
of ABT-737 synergizing well with other therapeutics 
(Table 3) are very encouraging (as seen from its thera-
peutic activity against a diverse repertoire of cell types), 
poor bioavailability and low aqueous solubility of ABT-
737 did present themselves as major obstacles against 
its further use in the clinic.

Table 3  The single and combined synergizing effects of ABT-737 on cell line viability and/or apoptosis

The cancer types are highlighted in bold (left column), the evaluation of single therapy alone is highlighted by ‘-single-‘, non-synergy is highlighted by ‘-‘and the 
corresponding studies are referenced in the column on the right (Ref ). Abbreviations: TN Triple Negative, CRC​ Colorectal cancer, HNSCC Head and Neck Squamous Cell 
Carcinoma, NSCLC Non-small cell lung cancer

Cancer Cell Type Combined Reduced Viability Apoptosis Ref

AML ex-vivo samples 5-azacytidine synergized – [112]

Breast MDA-MB-231R irradiation synergized – [113]

Breast T47D cisplatin synergized synergized [114]

Breast MCF-7, ZR-75-1, MDA-MB231 irradiation synergized – [35]

Breast MDA-MB-435S VX-680 synergized – [115]

Breast (TN) MDA-MB-231 docetaxel synergized – [116]

CRC​ C26, HCT116, LS174T oxaliplatin synergized – [117]

CRC​ HT-29, HCT116 celecoxib synergized – [118]

Glioma LN229, LN18 bortezomib synergized – [119]

HNSCC UM-22A, UM-22B, 1483 cisplatin/etopiside synergized – [120]

Lung A549 and H460 lines perifosine synergized synergized [121]

Lung A549 and 95-D nedaplatin synergized – [106]

Leukaemia HL-60, U-937, ML-1, MOLT-4 -single- reduced – [122]

Leukaemia (T-cell) MOLT-4 resveratrol synergized – [123]

Leukaemia HL-60 doxorubicin synergized – [124]

Liver HuH-7, HepG2, BEL-7402, SMMC-7721 norcantharidin synergized – [111]

Liver HepG2 curcumin synergized – [125]

Melanoma A375, WM852c bortezomib synergized synergized [109]

NSCLC A549, H460, H1299, H358, H2009, H1703, 
H596

cisplatin – synergized [126]

Oral MC-3, HSC-3 sorafenib synergized – [127]

Osteosarcoma U-2OS cisplatin synergized – [128]

Ovarian/Gastric SKOV-3, OVCAR-8, SGC-7901 epothilone B synergized – [129]

Ovarian patient derived organoids naftopidil synergized – [130]

Ovarian Ovcar-3, Igrov-1 pitavastatin synergized – [131]

Ovarian A2780, cisA2780, IGROV-1, OVCAR, SK-OV-
03, primary and xenograft

carboplatin synergized synergized [132, 133]

Prostate DU 145, LNCaP and PC-3 ARC​ synergized – [107]

Renal PV10, KRC/Y,A498, ACHN TRAIL synergized – [134]

Retinoblastoma Y79, WERI-Rb -single- – – [108]

Thyroid FTC236, ML1, SW1736, HTh7 doxorubicin/gemcitabine synergized – [135]

Uterine/Cervical SiHa, CaSki irradiation synergized – [136]

Breast, Colon, Liver, Pancreatic SW480 and LIM1215, Huh-7 and HepG2, 
HPAC, MDA-MB-231

ARC​ synergized synergized [137]

Breast, Colon, Prostate MDA-MB-231, HT-29, DU145 methylseleninic acid synergized – [110]
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‑Navitoclax (ABT‑263)
In striving towards overcoming bioavailability and solu-
bility issues for ABT-737, its redesign gave rise to orally 
administered Navitoclax (ABT-263) [59], which dem-
onstrated a Ki for Bcl-2 of < 0.010 nM and could bind 
albumin with greater affinity for potential additional 
delivery benefits in the clinic. While the latter was seen 
as an encouraging observation, such an interaction was 
unveiled to reduce the availability of Navitoclax for dur-
ing the treatment of CLL patients [138]. Regardless of the 
delivery method of choice, Navitoclax is currently being 
evaluated and pursued as single- or combined- anti-can-
cer therapeutic [48], as seen from its ability to sensitize 
cervical cancer cell lines [139] for example, or synergize 
with a number of therapeutics for hematological malig-
nancies [140] (Table  4). Despite consistent side effects 
for Navitoclax, which included thrombocytopenia, based 
on Bcl-xL expression-dependency for platelet survival, it 
was effective at killing Bcl-2-dependent CLL cancers, just 
as effectively as ABT-737 [138].

Despite such encouraging outcomes, resistance against 
Navitoclax was also encountered, due to the induction of 
Mcl1 [159] or Survivin expression [160], and the direct 
(or indirect) down-regulation of which, were seen as 
beneficial to Navitoclax efficacy [142, 143]. For example, 
inhibition of EGF-R mediated Mcl1 induction improved 

Navitoclax effects in leukemia K562 cells [161], by desta-
bilizing Mcl1 levels through the upregulation of NOXA 
expression [148, 154]. Conversely, not all instances 
of resistance were attributed to Mcl1 expression, as 
reported for cisplatin-treated non-small cell lung cancer 
cells (NSCLC), which induced cell death independently 
of Mcl1 expression levels [151].

‑Gossypol
Other broad-range BH3-mimetics include Gossypol 
and its derivatives. Derived from cotton seed extracts 
and identified using NMR binding assays and Fluores-
cence Polarization displacement assays, racemic Gos-
sypol directly interacted with Bcl-xL and could also 
counteract the anti-apoptotic effects of Bcl-2, with an 
IC50 of 13.2 μM in MCF-7 cells, as a pan-Bcl-2 inhibitor 
[52]. Gossypol also inhibits growth and induces apopto-
sis in several other cell types, such as H1975, H441 and 
A549 lung cells as a mono-therapeutic in a dose-depend-
ent manner, while also reducing H1975 xenograft growth 
in mice [162]. It can inhibit EGFR-L858R/T790M sign-
aling, proliferation and migration of NSCLC cells [163], 
induce death of prostate cancer DU-145 and PC-3 cells 
[164, 165] and ovarian SKOV3 cancer cells [166]. For-
tuitously, racemic Gossypol can also behave as a NOXA-
like BH3-mimetic, by selectively promoting apoptosis 

Table 4  The single- and combined- synergizing, or resistance-inducing effects of Navitoclax on cellular apoptosis

The cancer types are highlighted in bold (left column), the evaluation of single therapy alone is highlighted by -single-, non-synergy is highlighted by ‘-‘and the 
corresponding studies are referenced in the column on the right (Ref ). Abbreviations: AML Acute Myelogenous Leukemia, ALL Acute Lymphoblastic Lymphoma, CRC​ 
Colorectal cancer, HNSCC Head and Neck Squamous Cell Carcinoma, NSCLC Non-small cell lung cancer

Cancer Cell Type Combined Apoptosis Ref

AML Primary cells dasatinib – [141]

AML/ALL Jurkat, Molt-4 wogonin synergized [142]

Cervical SiHa, CaSki A-1210477 synergized [139]

CRC​ HCT116, DLD1, SW48, HT29, HCT-8 apigenin synergized [143]

CRC, Liver Huh7, HepG2, BEL7402, HCT116, DLD1, AGS sorafenib synergized [144]

CRC/Melanoma Colo-205 AZD6244 resistance – [145]

Esophageal SKGT-4, KATO-TN, YES-6 fluorouracil synergized [146]

Esophageal EC109, HKESC-2, CaES-17 -single- – [147]

HNSCC HN12 fenretinide synergized [148]

Liver Huh7 TRAIL resistance – [149]

Lung H1650 and H1975 src-inhibitors synergized [150]

Non-small cell lung LC2, PC10 cisplatin synergized [151]

Small cell lung H209 vorinostat synergized [152]

Lymphoma DoHH-2 and SuDHL-4 rapamycin – [153]

Neuroblastoma SH-SY5Y and CHLA-119 norcantharidin synergized [154]

Prostate LNCaP and PC3 paclitaxel synergized [155]

Prostate PC3, C4–2B, C4–2, DU145 MLN2238 synergized [156]

Ovarian Numerous paclitaxel/gemcitabine synergized [157]

Liver, Prostate, Cervical, 
CRC, NSCLC

Hep3B, PC3, HCT-116, SW480, and SW620, H1299, 
SK-BR-3, HeLa

metformin synergized [158]
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of cancer cells from the bladder [167], breast [168, 169] 
and prostate [170], when administered as a mono-ther-
apeutic. Mechanistically, Gossypol can reduce cellular 
viability upon p53 activation, as seen in LAPC4, PC-3, 
and DU-145 prostate cancer (PC) cells [171], through 
ER stress and autophagy in hepatocellular carcinoma 
(HCC) cells [172], and oxidative stress, as seen in ovar-
ian and MM cells [166, 173]. As a combined therapeutic, 
it has been reported to induce autophagy and apopto-
sis in a cell type-dependent manner [174] or exclusively 
autophagy in melanoma cells [175]. Alternatively, the R(-
)-Gossypol enantiomer AT-101, has also been encourag-
ingly reported to reduce invasiveness of rat MLL PC cells 
[176] and induce mitophagy in U87MG and U343 glioma 
cells [177]. Mechanistically, Gossypol and AT-101 may 
contribute to cell death by binding and inhibiting Mcl1, 
resulting in the sensitization of several cell lines to other 
therapeutics or through it stabilizing NOXA expression, 
as in gastric, breast and nasopharyngeal cell lines [178, 
179]. Collectively, racemic Gossypol or its enantiomer 
are showing good potential as anti-cancer agents which 
induce cell death through a variety of mechanisms, and 
in a variety of cell line-based models. They can be effec-
tive as a single- or combined- therapeutics (Table 5), but 
the activity of which may be limited through the levels of 
toxicity that arise from administering increasing doses 
[183].

Based on toxicity effects, alternative Gossypol deriva-
tives and analogues have been developed, based on the 
structural binding properties of the BIM protein BH3-
domain with the Bcl-2 protein, namely TW-37 (Com-
pound 5), and which can also bind Bcl-xL and Mcl1 

with respective Ki’s of 1110 and 260 nM [60]. As emerg-
ing alternatives to Gossypol, their further evaluation in 
model systems and potential use as single or combined 
therapeutics are awaited with great eagerness.

‑Obatoclax
Another promising BH3-mimetic, specific for all Bcl-2 
proteins includes the rationally-designed and prodigi-
nine-related Obatoclax, which binds the mitochondri-
ally-associated Bcl-2 protein and all pro-survival Bcl-2 
proteins with a Ki of 220 nM [61, 190], outlining its suit-
ability for the treatment of hematological malignancies 
and solid tumors [191, 192]. Good evidence to support 
this has been derived from xenograft models, where its 
successful use as a single agent against thyroid cancer, 
small cell lung cancer and colorectal cancer development 
has been reported, and efficacy of which can be enhanced 
when used as a combined therapeutic in limited instances 
with cisplatin, MEK inhibition, doxorubicin [193, 194], 
bortezomib, carfilzomib or AZD2281, as highlighted in 
Table 6.

Moreover, Obatoclax has completed phase I trials for 
several cancers with encouraging efficacy, but with nota-
ble side effects [191, 192].

NOXA‑mimetics
As to be expected NOXA expression plays a relatively 
restricted role in determining cell fate and tumor pro-
gression in the presence and absence of therapeutic 
treatments against LC [210–213], leukemias [214, 215], 
rhabdomyosarcoma [216, 217], PC [218], OC [219], colo-
rectal cancer (CRC) [220, 221], melanoma [222] and 

Table 5  The combined synergizing effects of Gossypol and its derivative (AT-101) against certain cancers and cell types

The therapeutic type is highlighted in bold (left column), non-synergy is highlighted by ‘-‘and the corresponding studies are referenced in the right column (Ref ). 
Abbreviations: CML Chronic Myelogenous Leukemia

Mimetic Cancer Cell Type Combined Apoptosis Ref

Gossypol Glioblastoma Diff13–20, TS13–20 temozolomide resistance – [180]

Gossypol CML K562 imatinib – [181]

Gossypol Colon HT-29 cells, HCT116, RKO fluorouracil – [182]

Gossypol Nasopharyngeal, Breast, 
Gastric

MCF-7, YC116, CNE2 gemcitabine – [183]

Gossypol Ovarian OVCAR-3 and MDAH-2774 zoledronic acid – [184]

Gossypol Thoracic H460, TE2, H211 TRAIL – [185]

AT-101 Bladder UM-UC2, UM-UC9 gemcitabine, carboplatin synergized [167]

AT-101 Breast SKBR-3, MDA-MB-453 trastuzumab – [186]

AT-101 Pancreatic BxPC-3 genistein – [187]

AT-101 Prostate PC-3 and xenograft radiation – [188]

AT-101 Prostate PC-3 xenograft docetaxel synergized [170]

AT-101 Prostate DU145, PC-3 sorafenib – [174]

AT-101 Prostate VCaP bicalutamide – [189]
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MM [223]. As a protein up-regulated in CLL, NOXA can 
interact with Mcl1 and neutralize its anti-apoptotic activ-
ity [224], thus offering good justification for the devel-
opment of NOXA-like BH3-mimetics, and particularly 
for CLL therapy [225]. Here, Mcl1-derived inhibitors 
had been reported to be sufficient to induce apoptosis 
through their specific targeting of NOXA. While encour-
aging, such an approach may come with limitations, 
seeing as anti-apoptotic proteins (such as NOXA) are 
embedded in the mitochondrial membrane and more 
susceptible to changes in their conformation, and which 
may consequently respond differently to the affinity of 
mimetics in comparison to BH3-mimetics which are oth-
erwise directed at soluble targets [14].

PUMA‑mimetics
The BH3-only protein PUMA, is frequently down-reg-
ulated in a number of tumors [26], and which may con-
tribute to chemoresistance and tumor progression in 
conjunction with other protein factors, based on the phe-
notype of PUMA knockout-mice lacking spontaneous 
oncogenesis [226]. Nevertheless, PUMA-derived helices 
in the form of SAHBs [227], which have the capacity to 
bind BAX or Bcl-xL/Mcl1 as dual anti-apoptosis inhibi-
tors that induce BAX activation, have shown some 
encouraging outputs in overcoming chemoresistance in 
neuroblastoma cells. As in the instance of BH3-mimetics, 
the starting point here has been the design of peptide 
inhibitors, which can potentially take up a helical con-
formation upon binding the hydrophobic groove of BAX, 

Bcl-xL or Mcl1 [228, 229], or through them being gener-
ated as stapled peptides [228].

SMAC‑mimetics
The human Inhibitor of Apoptosis (IAP) family of pro-
teins are composed of eight members, each of which 
encode a Baculoviral IAP Repeat domain (BIR) and 
several of which are over-expressed in hematologi-
cal malignancies and solid tumors [230–232]. While 
each member can regulate cell survival in response to a 
number of signaling cues, cIAPs and XIAPs have direct 
anti-apoptotic roles [233, 234] and offer chemoresist-
ance when over-expressed in cancer cells [230]. Mecha-
nistically, they can be targeted through homodimers of 
Smac binding the BIR domain and destabilizing the IAP 
protein through IAP auto-ubiquitination and degrada-
tion [235–238]. Consequently, cells can be sensitized to 
the apoptosis-inducing effects of TRAIL with PI3K or 
MAPK inhibition [239, 240] and etoposide or paclitaxel 
[241] in combined therapeutic approaches. As mono-
therapeutics, Smac-mimetics can act through preventing 
inhibitory IAP binding to caspases -3, -7, -9 [242–245] 
and thus potentiating the effects of any death-induc-
ing signals [230]. Therefore the loss of Smac expression 
can negatively impact the full execution of apoptosis, 
as seen with some cancer patients encoding high levels 
of Smac expression, and which can be correlated with 
a better prognosis [230]. Consequently, targeting the 
Smac-IAP interaction has been explored as a therapeu-
tic strategy through the use of SMIs, peptides [230], LAso 

Table 6  The combined synergizing effects of Obatoclax on cellular apoptosis

The cancer types are highlighted in bold (left column), non-synergy is highlighted by ‘-‘and the corresponding studies are referenced in the column on the right (Ref ). 
Abbreviations: AML Acute Myelogenous Leukemia

Cancer Cell Type Combined Apoptosis Ref

AML U937, HL-60, MV4–11 sorafenib – [195]

Bladder HT1197 paclitaxel – [196]

Bladder T24, TCCSuP, 5637 cisplatin – [197]

Cholangiocarcinoma KMCH, KMBC, TFK, TRAIL – [198]

Colon HCT116, HCT-8, fluorouracil – [199]

Esophageal CaES-17 MG132 – [200]

Glioblastoma Patient samples SAHA, LBH589 – [201]

Small cell lung H82, H526, DMS79, H196, H1963, H69 bortezomib and carfilzomib synergized [202]

Non-small cell Lung LoVo, RKO, HCT116 oxaliplatin resistance – [203]

Neuroblastoma SK-N-DZ, IGR-NB8 hydroxychloroquine/cisplatin/
doxorubicin

– [204]

Pancreas BxPC-3 gemcitabine – [205]

Pancreas PANC-1 and BxPC-3 TRAIL – [206]

Pancreas BxPC-3, HPAC chloroquine – [207]

Pancreas BxPC-3, HPAC, MIAPaCa-2, PANC-1, AsPC-1, 
CFPAC-1

AZD2281 synergized [208]

Thyroid KTC-1, BCPAP LY3009120/vemurafenib resistance – [209]
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Smac-mimetics or Smac anti-sense oligonucleotides, 
and all of which showed varying degrees of success. For 
example, Smac-mimetics induced the degradation of 
cIAPs -1, -2 and -3 via the proteasome, leading to NIK 
activation, NF-κB activation, and up regulation of TNF-α 
expression and subsequently cell death in an autocrine- 
or paracrine- manner, in treated fibrosarcoma, colorectal 
and melanoma cell lines [235, 238]. Generally speaking, 
Smac-mimetics can be as little as 4 aa long and which 
can target BIR repeats -3 and -4 of the three cIAPs [246]. 
While they have shown good effects against specific solid 
tumors and leukemias as mono-therapeutics [247], they 
can also sensitize cells to death in combined therapeutic 
regimens, as seen with temozolomide [248], cytarabine 
[249], prednisolone [250] and even the pro-inflamma-
tory cytokine TNF-α [251, 252], in a variety of cell types 
(Table 7).

Smac-mimetics or IAP inhibitors have also shown 
effectiveness with death receptor agonists in a variety of 
cell types, as seen against TRAIL in -CLL [282], -ALL 
[283] and -cholangiocarcinoma cell types [284], or with 
radiation-induced death of glioblastoma cells [285]. Simi-
larly, signal transduction inhibitors have been reported 
to improve efficacy of treatments when administered in 
combination with Smac-mimetics, as seen with 5-Aza 
against AML cells [286, 287], tyrosine kinase inhibitors 
against leukemia cells [67, 288], CD95 agonist antibod-
ies against leukemia cells [289], or Smac-mimetics and 
TNF-α against alveolar epithelial cells [290]. Lastly, some 
Smac-mimetics exhibit synergistic effects with Birina-
pant-induced death of liver cancer cells [291], triple-neg-
ative BC cells (TNBC) [292], ovarian cancer (OC) cells 
[260] and primary AML cells in response to BV6 [262].

Table 7  The combined synergizing effects of Smac-mimetic (or IAP inhibitor) agents against selected cancers and cell types

The therapeutics types (Agents) are highlighted in bold (left column) and the corresponding studies are referenced in the column on the right (Ref ). Abbreviations: 
AML Acute Myelogenous Lymphoma, CRC​ Colorectal cancer, HNSCC Head and Neck Squamous Cell Carcinoma

Agents Cancer Cell Type Combined Ref

APG-1387 Liver HepG2 and HCCLM3 TNF-α, TRAIL [253]

APG-1387 Ovarian SKOV3 TNF-α [254]

AT-406 Osteosarcoma AT-406, Xenograft doxorubicin [255]

AZ58 Bladder UMUC-6, UMUC-12, and UMUC-18 gemcitabine, cisplatin [256]

Birinapant AML MLL-ENL AML emricasan [257]

Birinapant Breast SUM190, SUM149 TRAIL [69]

Birinapant Head and Neck UM-SCC-46 and -11B xenograft radiation [258]

Birinapant Non-small cell Lung LKB1- and KRAS-mutated ralimetinib [259]

Birinapant Ovarian CAOV3, OVCAR4, SKOV3, OVCAR8, OV90, 1A9 docetaxel [260]

Birinapant Ovarian OCAR3, OVCAR8 carboplatin/ paclitaxel [261]

BV6 AML 51% primary AML cells cytarabine [262]

BV6 Glioblastoma – temozolomide [263]

BV6 CRC​ SW480, HT-29, HCT-15 radiation [264]

BV6 Glioblastoma A172, T98G temozolomide [265]

BV6 Multiple HT1080, HeLa, Jurkat, L363, MMI, OPM2, RPMI, HT29 TNF-α, TRAIL [266]

BV6 Renal CaKi1, KTCTL26, 786O, KTCTL30, KTCTL2 interferon-α [267]

JP-1201 CRC​ HT-29 radiation [268]

JP-1201 Pancreas Xenograft MIA PaCa-2 gemcitabine [269]

LCL161 B-Cell Lymphoma Xenograft Raji/4RH rituximab, gemcitabine, vinorelbine [270]

LCL161 Breast MCF7-TamC3 tamoxifen [271]

LCL 161 HNSCC human cell culture, xenograft radiation [272]

LCL161 HNSCC PCI-1, PCI-9, PCI-13, PCI-52, PCI-68 FAS-L [273]

SM-164 Breast (SK-BR3) and (MDA-MB-468 radiation [274]

SM-164 Breast, Prostate, Colon Cell lines TRAIL [275]

SM-164 Pancreatic Panc-1, AsPC-1, BxPC-3 gemcitabine [276]

compound A Bladder UC-9. UC-14, RT4 v1, RT4 v6 TRAIL [277]

compound 3 Pancreas/CRC​ Panc-1 and HCT116 doxorubicin [278]

Debio 1143 Lung LLC-OVA radiotherapy [279]

SH122 Prostate DU145, CL1 TRAIL [280]

SW IV-134 Pancreatic PANC-1, CFPAC-1, BxPC-3, AsPC-1, MIA PaCa-2 gemcitabine [281]
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‑Venetoclax (ABT‑199)
Venetoclax was developed through rational design 
approaches as a high-affinity antagonist for Bcl-2 (with a 
Ki < 0.010 nM) and a 4000 fold lower affinity binding for 
Bcl-xL, to help overcome thrombocytopenia side effects 
derived from off-target Bcl-xL inhibition, and a common 
feature associated with ABT-737 and Navitoclax treat-
ments [62]. While Venetoclax could induce therapeutic 
resistance by up-regulating Bcl-xL and Mcl1 expression 
in some instances [293], it has shown encouraging results 
as a single agent for treating acute lymphocytic leukemia 
(ALL) [294], head and neck squamous cell carcinoma 
(HNSCC) [295] and neuroblastoma [296, 297] in pre-
clinical models. Through structure-based design, other 
ABT-737-derived SMIs targeting Bcl-2 and Bcl-xL, have 
also arisen in the form of BM-957 and BM-1197, which 
showed improved solubility, pharmokinetic proper-
ties and tumor regression capabilities [298, 299], as sin-
gle therapeutics against AML [300]. More specifically, 
such agents spared platelets [62] and to avoid therapeu-
tic resistance, Gemcitabine was reported to effectively 
decrease Mcl1 expression, while enhanced Bcl-2 expres-
sion (in pancreatic cancer cells), could be efficiently 
targeted by Venetoclax through it beneficially enhanc-
ing expression of BIM [301]. Similarly, Venetoclax has 
shown encouraging results for synergizing with a grow-
ing array of therapeutics in pre-clinical models for several 

cancer cell types, as a well-tolerated combined therapeu-
tic (Table 8).

Mcl1‑inhibitors
As the first homologue of Bcl-2 found to be overex-
pressed in a number of hematological malignancies such 
as MM [316], and which conferred anti-apoptotic effects 
under normal conditions [317–320], Mcl1 expression 
was also reported to contribute to chemoresistance, thus 
highlighting its suitability to be targeted in combined 
therapeutic approaches. Normally, Mcl1 is localized to 
the MOM [321], ER, nucleus [322, 323], and mitochon-
drial matrix [321] in conjunction with its spliced variants 
Mcl-1S [324–326] and Mcl-1ES [327]. As a protein that 
is essential for survival of a number of normal cell types 
[328] it has been reported to be over-expressed in a num-
ber of other cancers, such as B- and T- non-Hodgkin’s 
lymphoma [329], and solid tumors, such as hepatocel-
lular carcinoma (HCC) [330], esophageal squamous cell 
carcinoma (SCC) [331] and breast cancer (BC) [332].

Based on these properties of Mcl1 expression, Mcl1-
inhibitors have been eagerly pursued, giving rise to the 
discovery of Prodigiosin for example, which is a natural 
compound that targets the hydrophobic groove of Mcl1 
with good specificity [333]. Based on the normal role of 
Mcl1 for hematopoietic stem cell survival [334] and oxi-
dative phosphorylation [321], the development of most 

Table 8  The combined synergizing effects of Venetoclax on cellular apoptosis

The cancer types are highlighted in bold (left column), non-synergy is highlighted by ‘-‘and the corresponding studies are referenced in the column on the right (Ref ). 
Abbreviations: AML Acute Myelogenous Leukemia, ALL Acute Lymphoblastic Lymphoma, MDS Myelodysplastic syndrome, CMML Chronic myelomonocytic leukemia, 
BCL B-cell lymphoma, FL Follicular Lymphoma, MM Multiple myeloma

Cancer Cell Type Combined Apoptosis Ref

ALL LOUCY cell line doxorubicin, l-asparaginase, and dexamethasone – [302]

AML Primary cells and U937 daunorubicin or cytarabine – [303]

AML KOPT-K1 S63845 synergized [304]

AML MV4–11 and MOLM-13, KG-1a, U937, and THP-1 triptolide synergized [305]

AML Jurkat and Molt4 gemcitabine synergized [306]

AML Molm14 and OCI-AML3 VS-4718 – [307]

AML/MDS/CMML Ex-vivo samples 5-azacytidine – [112]

Breast 23 T Xenografts and MCF7 tamoxifen, AZD8055 – [308]

CML KCL22 imatinib sensitized [309]

CRC​ Xenograft and RKO cell line LZT-106 synergized [310]

Diffuse BCL and FL Cell lines and TMD8 xenograft model ibrutinib synergized [311]

Leukemia, Lymphoma SU-DHL-4, OCI-Ly1 199R, SC-1199R and BCl and FL 
primary samples

A-1592668 and analogue A-1467729 synergized [312]

Nasopharyngeal CNE-2, 5-8F S63845 synergized [293]

MM OPM2, H929 THZ1 synergized [313]

MM U266, KMS11, OPM2, RPMI8226 and KMS28-PE flavopiridol synergized [314]

Pancreatic MIA Paca-2 xenograft gemcitabine – [301]

Soft Tissue Sarcoma Rhabdomyosarcoma, SW982 (synovial sarcoma) cells 
or primary cells

bortezomib synergized [315]
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Mcl1 antagonists has been seen to offer potential limita-
tions when used as a mono-therapeutic.

Alternative Mcl1-specific mimetics or inhibitors are 
also showing their usefulness as mono- or combined- 
therapeutics, as seen with S63845-mediated apoptosis 
of MM and NSCLC, gastric cancer (GC), PC, [74] and 
T-cell acute lymphoblastic leukaemia (T-ALL) cells 
[304] or ABT-199 and S63845 co-treatments in cervical 
cancer cells [335]. Other, promising Mcl1-specific can-
didates as combined therapeutics include, A-1210477 
(Ki, 0.45 nM) [70], AZD5991 (Ki, 0.13 nM) [73] and 
AMG-176 (Ki, 0.13 nM) [72], AM8621 (Ki, 0.06 nM) 

[72], S64315 (Ki, 0.048 nM) [336] and VU661013 (Ki, 97 
pM) [76], as outlined in Table 9.

From this group, AZD5991 showed promising effects 
[363, 364], either as a monotherapy or as a combined 
agent [73], to treat a number of hematologic and solid 
tumor cell lines. It also showed combined effectiveness 
against biomarker-specific and Venetoclax-resistant 
AML cells, highlighting its usefulness for cell line- or 
biomarker- specific cancers [365]. Of similar interest is 
AZD0466, which can also be administered using nan-
oparticle technology as novel delivery method [366]. 

Table 9  The combined synergizing effects of Mcl1-inhibitors against selected cancer and cell types

The therapeutic types (Agents) are highlighted in bold (left column) and their corresponding studies referenced in the column on the right (Ref ). Abbreviations: CML 
Chronic Myelogenous Leukemia, CRC​ Colorectal cancer, DLBCL Diffuse large B-Cell Lymphoma, PC Prostate Cancer, GC Gastric Cancer, NSCLC Non-small cell lung 
cancer, MM Multiple myeloma, HNSCC Head and Neck Squamous Cell Carcinoma, nHL Non-Hodgkin’s Lymphoma, CLL Chronic lymphocytic leukemia, AML Acute 
Myelogenous Lymphoma, T-ALL T-cell acute lymphoblastic leukemia

Agents Cancer Cell Type Combined Ref

A1210477 AML THP-1 U937 venetoclax [337]

A1210477 Breast MDA-MB-231 cells TRAIL [338]

A1210477 Cervical SiHa and CaSki navitoclax [139]

A1210477 CML K562, K562/R EE-84 [339]

A1210477 CRC​ RKO, HT29, A375 cobimetinib [340]

A1210477 DLBCL U-2946 navitoclax [341]

A1210477 PC, GC, NSCLC, MM BxPC-3, EJ-1, H23, and OPM-2 navitoclax [70]

A1210477 HNSCC PCI15B, Detroit 562, MDA686LN, and HN30 navitoclax [342]

A1210477 nHL SU-DHL-4, WSU-NHL, WSU-DLCL2, KARPAS-422 venetoclax [343]

AMG-176 CLL Patient samples (5) venetoclax [344]

AZD-5991 AML OCI-AML3 and MCL-1-OE Molm13 and MV4–11 venetoclax [345]

AZD5991 MM NCI-H929 bortezomib, venetoclax [73]

GDC-0941 Breast MDA-MB-231, SKBR3 ABT-737 [346]

Mim1 Glioblastoma U87mg temozolomide [347]

Mim1 Melanoma C32 melanoma cells dacarbazine [348]

Mim1 MM Colo829 dacarbazine [349]

S63845 AML OCI-AML3, MOLM-13, OCI-AML2 trametinib/HDM201 [350]

S63845 AML Primary samples venetoclax [351]

S63845 AML MOML-13, SKM-1, trametinib [352]

S63845 AML Cell lines and primary cells venetoclax [353]

S63845 Breast SK-BR-3 docetaxel, trastuzumab, lapatinib [354]

S63845 CRC​ HCT116 regorafenib [355]

S63845 Mantle cell lymphoma Patient-derived xenografts venetoclax [356]

S63845 Melanoma Patient samples navitoclax [357]

S63845 Melanoma MeWo TRAIL resistance [358]

S63845 Myeloma U266 xenograft venetoclax [359]

S63845 MM MOL-P8, OPM-2, NCI-H929 venetoclax, bortezomib [360]

S63845 MM RPMI-8226 xenograft venetoclax [361]

S63845 Nasopharyngeal carcinoma CNE-2, 5-8F venetoclax [293]

S63845 T-ALL Zebrafish T-ALL cells venetoclax [304]

VU661013 AML MV-4-11, AML-001/2, patient xenografts venetoclax [76]

VU661013 Breast HCC1428, MCF7, T47D navitoclax [362]
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Alternatively, S63845 [74] is also showing good prom-
ise, although its optimal use is not fully

defined [367], but nevertheless, can be used as a mono-
therapy against T-ALL [304] using MOLT-3, RPMI-8402 
or neuroblastoma patient cells [297] and can be delivered 
using nanoparticles to improve remission and therapeu-
tic indices [368].

As drug resistance can be mediated by Mcl1 up-regu-
lation in a number of cancer types [369], which can be 
sensitized to death upon Mcl1 down-regulation (as in 
the instance of some ABT-737 co-treatments) [99], Mcl1 
inhibitors are therefore viewed as having better potential 
for combined chemotherapeutic treatments. Alternative 
approaches that induce Mcl1 proteasomal degradation 
(by GDC-094 treatments, for example), have also been 
effective in overcoming resistance, thus allowing ABT-
737 to have greater effects against BC cells [346] and lung 
cancer (LC) cells [106]. Similar effects have also been 
reported for Mcl1 inhibition and TRAIL co-stimulation 
of BC cells [338]. Conversely, stabilization of Mcl1 pro-
tein by BAG3 and survival of BC and PC cells under 
ABT-737 stimulatory conditions has also been reported 
[105], highlighting a central but indirect and positive reg-
ulatory mechanism for the Mcl1 protein as a therapeu-
tic resistance factor. In a similar manner, the interaction 
of Mcl1 with other protein regulators cannot go ignored 
and may help in overcoming ABT-737 resistance, as seen 
from the NOXA protein interacting with Mcl1 [211, 370]. 
Here, enhancing NOXA levels, suppressed the anti-apop-
totic actions of Mcl1 and override resistance to ABT-737, 
with Vorinostat [152], Vinblastine [371], Bortezomib 
[109], Dinaciclib [372] co-treatments in SCLC, CLL and 
melanoma cells.

Transcriptional repression of Mcl1 expression has 
also been reported as an effective approach to over-
coming drug resistance as reported in the instance of 
HCC sensitization to ABT-737 and Norcantharidin co-
treatments [111]. Alternatively, inhibition of Mcl1 can 
also be induced through mitochondrial stress or under 
Obatoclax stimulatory conditions, which can initiate 
autophagy-dependent necroptosis as an alternative to cell 
death by apoptosis [373].

As mentioned, of emerging interest are studies being 
performed in the presence of specific genetic biomark-
ers [351]. For example, AML primary samples with an 
IDH2–140 mutation were more sensitive to Venetoclax 
as a single agent, whereas samples with a FLT3-ITD 
mutation were more resistant, which is an effect that 
could be reversed with S63845 co-treatments [351]. Simi-
larly, AMG-176 [72] has also been shown to be effective 
as a monotherapy directed against Mcl1 in CLL lympho-
cyte patient samples [344] and in combination with Vene-
toclax [344]. Lastly, stapled peptides can also activate 

and promote BAX/BAK/BIM proteins [374], which also 
validates findings from previously published structural 
studies [375, 376]. For example BimS2A, a hydrocarbon 
stapled BIM BH3-peptide can override Mcl1 mediated 
drug resistance in cell lines [377] only when Bcl-xL is 
absent or neutralized [378]. Additionally, Mcl1-specific 
MIM1 was identified in a stapled peptide-based screen 
[75], which showed good efficacy as a monotherapy 
against colo-829 melanoma cells, and which synergized 
the death inducing effects of ABT-737 or Decarbazine 
[349, 379]. When taken with reports that the Mcl1 hydro-
phobic groove is more rigid than the hydrophobic groove 
of Bcl-xL [14], targeting Mcl1 may be permitted with 
greater specificity and affinity and which may even offer 
some very promising outcomes with minimal non-spe-
cific side effects towards Bcl-xL. Consequently, induced 
Mcl1 expression can potently enhance drug resistance in 
cancer cells treated with BH3-mimetics and Mcl1 inhibi-
tors are showing their true potential in over-coming this 
when utilized in combined- therapeutic treatments, in 
pre-clinical studies.

To summarize, a growing number of BH3-mimetics 
have been designed and show good efficacy for induc-
ing cell death at nM quantities. Here, compounds such 
as ABT-737, Obatoclax and Gossypol, have even been 
reported to show broader specificity by displacing anti-
apoptotic proteins Bcl-2, Bcl-xL and Mcl1, thus enhanc-
ing their effectiveness at inducing or sensitizing cells to 
apoptosis in a number of hematological cancers and solid 
tumors [51, 61, 100, 190, 380–382]. However, such stud-
ies have also indirectly unveiled the importance of Bcl-xL 
in platelet homeostasis, thus inspiring alternative target-
ing strategies, and which arrived at the further develop-
ment of Navitoclax- and Venetoclax- derivatives, which 
eliminate Bcl-xL protein levels through protein degrada-
tion [383, 384]. Limitations to one side, such stoic exam-
ples offer great promise as therapeutics, the development 
of which have also encouraged avenues of research to 
overcome important considerations, such as off-target 
effects, bioavailability, and solubility.

In view of the surge in efforts at developing promising 
mimetics at the preclinical level, one central question that 
has been raised originates from how well basic-research 
efforts have developed in the direction of translational 
medicine. Although the Venetoclax and Mcl1-inhibitor 
paradigms lay strong foundations for other mimetics to 
developmentally follow suit by (at the pre-clinical and 
clinical level), a significant number of the resulting thera-
peutics still remain to be evaluated in the clinic. There-
fore, in the following sections we highlight what progress 
has been made over the last 5–10 years in bringing the 
most promising aspects of specific therapeutic strategies 
towards fruition, as seen from published clinical trials.
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BH3‑mimetics and Bcl‑2 protein inhibition: a clinical 
perspective
‑ABT‑737
Although ABT-737 showed promising therapeutic prop-
erties in pre-clinical cell line-, primary cell- and animal-
models against cancers over-expressing Bcl-2 or Bcl-xL 
[51], to date only two clinical trials for ABT-737 have 
been publicized (www.​clini​caltr​ials.​gov). These addressed 
the effects of platinum combined with ABT-737 against 
ovarian cancer (NCT01440504) and the use of ABT-737 
ex-vivo on apoptosis of platelets in idiopathic thrombo-
cytopenic purpura patients co-treated with Eltrombopag 
and Romiplostim (NCT00902018, [385]). While the find-
ings from the former study remain to be published, in 
the latter study (NCT00902018), 8 h and 3 h treatments 
of ABT-737 sensitized patient platelets to apoptosis, and 
Eltrombopag pre-treatment for 1 week gave rise to thera-
peutic resistance towards ABT-737, possibly due to a 
recorded increase in the ratio of Bcl-xL:BAX proteins or 
enhanced Akt signaling and Mcl1 expression in patient 
samples. As the prototypical BH3-mimetic [51], ABT-737 
did encouragingly enter clinical trial phases I/II, but poor 
solubility and oral bioavailability [59, 386] did offer limi-
tations in its dose adjustments during combined or single 
treatment approaches [387].

‑Navitoclax (ABT‑263)
As the orally available analogue of ABT-737, promising 
findings from phase I/II clinical trials with Navitoclax 
have been recorded for its safe tolerance [388] against 
various types of cancer [389–391]. To date, 34 clinical 
trial studies have been registered (www.​clini​clatr​ials.​gov), 
of which 17 have been completed and 12 published in 
depth (Table 10).

As a single agent, it has been tested with CLL 
(NCT01557777), platinum resistant ovarian cancer 

(NCT02591095) and in combination with other drugs, 
against hematological and solid cancers [192] such as 
Rifampicin (NCT01121133, [398]), and Ketoconazole 
(NCT01021358). Results for some of these trials are 
eagerly awaited. Among the hematological neoplasms, 
Navitoclax was evaluated in combination with Rituximab 
in phases I/II clinical trial studies, conducted in patients 
with relapsed or refractory CD20+ lymphoid malignan-
cies and patients with B-cell CLL with no prior treat-
ment (NCT01087151), respectively. Here, combinations 
of Navitoclax and Rituximab were tolerated and showed 
significant synergistic effects in both settings [399, 400]. 
Additionally, Navitoclax showed encouraging disease 
stabilization properties as a single therapeutic or in com-
bination with Gemcitabine in NSCLC and solid tumor 
patients, although side effects remained as on-going con-
cerns. In this context, and more recently among hema-
tological cancer patients, Venetoclax was evaluated in 
combination with Navitoclax (NCT03181126) to deter-
mine safety and pharmokinetic properties in a phase I 
trial for relapsed or refractory ALL or LL patients and 
which offered more encouraging outcomes, highlighting 
promising potential for BH3 mimetics to be used in com-
bination with each other in addition with pre-existing 
therapeutics.

‑Gossypol
AT-101, the orally available enantiomer of racemic Gos-
sypol, showed acceptable anti-cancer properties in 
a range of models (Table  11), and which led to it being 
evaluated further in clinical trials.

To date, 29 clinical trial studies have been registered 
(www.​clini​caltr​ials.​gov), 17 completed and 5 of which 
have been published in detail (Table  11). As a mono-
therapeutic, it has been tested in several phase II tri-
als addressing its efficacy in NSCLC (NCT00773955), 

Table 10  Selected phase I clinical trials conducted with Navitoclax as a single or combined therapeutic in untreated and pre-treated 
patients with Docetaxel (DOC), Erlotinib (ERLO), Gemcitabine (GEM), Carboplatin (CARB), Paclitaxel (PAC), Etopiside (ETOP), Cisplatin 
(CISP) against Advanced Solid Tumors (AST), non-small cell lung cancer (NSCLC), Prostate Cancer (PC), Squamous cell carcinoma (SCC) 
and lymphoid malignancies (LM) for Maximum Tolerated Doses (MTD) outcomes

The clinical trials reference numbers highlighted in bold (left column), the evaluation of a single therapy alone is highlighted by -single-. Objective Response Rates 
(ORR) and Partial Responses (PR) are expressed as responding patient numbers/numbers assessed, or as percentages (%). Disease stabilization (Stabilized) effects (as 
percentage responders) are highlighted in months (m). The corresponding references for the studies are highlighted in the column on the right (Ref )

Navitoclax Combined Patients Disease Outcomes ORR Stabilized Ref

NCT00888108 DOC 39/41 Pre-Treated AST MTD 4/35 PR – [392]

NCT01009073 ERLO – NSCLC, PC, SCC MTD 0% ORR 27% [393]

NCT00887757 GEM Pre-Treated ST MTD 0% ORR 54% [394]

NCT00891605 CARB/PAC – ST TERMINATED 5.3% PR 36.80% [395]

NCT00878449 ETOP/CISP Untreated (14 days) SCLC MTD – – [396]

NCT00445198 -single- Pre-Treated NSCLC, ST 0% 1/47 PR 22.8% (13 m) [390]

NCT00406809 -single- – LM MTD 10/46 PR – [389, 397]

http://www.clinicaltrials.gov
http://www.cliniclatrials.gov
http://www.clinicaltrials.gov
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adrenocortical cancer (NCT00848016) and giant cell 
glioblastoma (NCT00540722) with significant adverse 
gastrointestinal effects (such as diarrhoea and nausea) or 
thrombocytopenia and neutropenia, with little significant 
benefits. Nevertheless, testing has advanced to deter-
mine efficacy in relation to genetic biomarker expres-
sion, such as the Bcl-2 family of BH3-proteins and the 
results for which are eagerly awaited (NCT00540722). 
AT-101 has also been tested in combined therapeutic 
approaches in trials for solid tumors and hematological 
cancers such as SCLC (NCT00397293, NCT00544596), 
NSCLC (NCT00544960), CLL (NCT00286780), relapsed 
or refractory SCLC (NCT00397293) and with androgen 
ablation therapy in PC (NCT00666666). While some of 
the studies are yet to report their findings, AT-101 with 
androgen ablation did encouragingly reduce circulating 
levels of Prostate-Specific Antigen (PSA) in PC patients 
(NCT00666666). Based on AT-101 binding Mcl1, further 
work in this area may address how this agent synergizes 
with other well-established (or promising) BH3-mimet-
ics, or in overcoming enhanced Mcl1-expression medi-
ated Venetoclax resistance.

‑Obatoclax
As an antagonist that binds the BH3-domain of apop-
totic proteins, Obatoclax has been reported to induce 
cell death, cell arrest and autophagy in leukemia and lym-
phoma cell lines [190, 402–407]. To date, 20 clinical trials 
for Obatoclax have been registered (www.​clini​caltr​ials.​
gov), of which 12 have been completed, and 8 of which 
have been described in detail (Table 12).

Obatoclax has been tested in a number of phase I/
II trials against SCLC (NCT00682981, NCT00521144), 
NSCLC (NCT00405951), Hodgkin’s Lymphoma 

(NCT00359892), MCL (NCT00407303), CLL 
(NCT00600964), and AML (NCT00684918), with mar-
ginally-encouraging outcomes as a single agent or in a 
limited number of combined studies with common side 
effects. This may be attributed to it beneficially target-
ing Bcl-xL (in addition to Bcl-2 and Mcl1) to differ-
ing degrees (at a fixed dose), albeit with limited clinical 
benefits (such as disease stabilization) as a dual-acting 
drug. Alternatively, in utilizing a combined therapeu-
tic approach, mono-therapeutics (exclusively specific 
for Bcl-2, Bcl-xL or Mcl1), are being seen to have the 
advantage of being optimized in doses, to target each of 
these components more accurately based on the degree 
of resistance encountered, and may (in some respects) be 
a more fruitful approach [191, 192, 410, 416, 417]. Based 
on the benefits arising from Obatoclax stabilizing the 
progression of certain cancers as a mono-therapeutic, 
there does therefore exist some potential in how it may 
be optimized further for this purpose, and possibly there-
after in combined therapeutic regimens.

SMAC‑mimetics
As an important emerging therapeutic group with great 
potential based on pre-clinical studies, 10 clinical stud-
ies for the Smac-mimetic LCL-161 have been registered 
to date (www.​clini​caltr​ials.​gov), of which 6 have been 
completed and 3 of which have been described in detail 
(Table 13).

Additionally, phase I studies of TL32711, LCL-161 and 
HGS1029 Smac-mimetics have been conducted (orally 
and intravenously), in patients with solid tumors and lym-
phoma, revealing mixed outcomes ranging from being 
well-tolerated to inducing cytokine release syndrome. 
As expected, the latter can be explained through clinical 

Table 11  Selected phase I-II clinical trials conducted with AT-101 as a single (−single-) or combined therapeutic on untreated/pre-
treated patients with Carboplatin (CARB), Paclitaxel (PAC), Cisplatin (CIS), Etoposide (ETOP), Luteinizing Hormone Receptor Hormone 
(LHRH) agonist, Bicalutamide (BIC) against Advanced Solid Tumors (AST), Giant Cell Glioblastoma (GCG), Adrenocortical (ADC), Solid 
Tumors (ST), Small Cell lung Cancer (SCLC) and Metastatic Prostate Cancer (MPC) are highlighted for Maximum Tolerated Doses (MTD). 
Side effects are abbreviated as ADP (Abdominal Pain), Neut (Neutropenia), Throm (Thrombocytopenia), Gastrointestinal symptoms (GI), 
Fatigue (FAT), Anemia (Anem) and Nausea (Nau). Objective Response Rates (ORR), Complete Responses (CR), Partial Responses (PR), 
Prostate-Specific Antigen levels (PSA) and percentage patients (%) from the whole group experiencing disease stabilization effects are 
also highlighted (Stab.). The clinical trials reference numbers are highlighted in bold (left column), and the corresponding references 
highlighted in the column on the right (Ref ). Unavailable data is highlighted by ‘-‘

AT-101 Phase Patients Patients Combined Disease Adverse Effects ORR Stab. Ref

NCT00891072 I 24 Pre-treated CARB/PAC AST ADP/Neut/Throm 4.16% CR; 16.66% PR 33% [401]

NCT00540722 II 56 Untreated (3 wks) -single- GCG​ GI/FAT – – –

NCT00848016 II 29 – -single- ADC Anem/Naus/FAT – – –

NCT00544596 I 27 Untreated (4 wks) CIS/ETOP ST/SCLC – – – –

NCT00773955 II 14 Pre-treated -single- SCLC Anem/GI 0% CR; 0% PR – –

NCT00666666 II 55 Untreated (4 wks) LHRH/BIC MPC Anem/GI/AT 18–60% Decreased PSA – –

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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biomarker studies showing the degradation of cIAP and 
up-regulation of NF-κB activation and pro-inflammatory 
cytokine expression [418–421]. Further optimization of 
such approaches may help overcome such side effects. 
Nevertheless, LCL-161 does exhibit disease stabiliza-
tion (Table  13), in relation to other initial phase I trials 
evaluating alternative Smac-mimetics, that show encour-
aging evidence of significant anti-tumor activity, as seen 
with GDC-0917 as a monotherapy for patients with OC 
or MALT-lymphoma, HGS1029 against colon cancer and 
Debio1143 against melanoma metastases [418]. From 
the perspective of a combined therapeutic, the effects of 
Smac-mimetics can be enhanced further upon the co-
stimulation of cells with death inducing ligands such as 
TNF-α and TRAIL, and is also an area being developed 
through inducing their expression with oncolytic viruses 
and immunomodulatory adjuvants [422].

Venetoclax (ABT‑199)
As the most promising therapeutic from the BH3-mimet-
ics group in targeting the Bcl-2-BAX or -BAK axis of 
apoptosis regulation, to date 331 clinical trials have been 
registered testing Venetoclax, and of which 27 have been 
completed (www.​clini​caltr​ials.​gov). As seen in Tables 12, 
14 studies have been published in detail, where Vene-
toclax was seen to exhibit a relatively good safety pro-
file, leading to its evaluation in trials with combined 
agents and in patients with specific genetic biomarker 
aberrations.

As seen, Venetoclax is showing itself to be a very 
promising therapeutic, against Bcl-2-dependent cancer 
cells such as CLL, acute leukemias, breast cancer, myc-
driven lymphomas [293–295], and through success-
ful phase I-III trials for acute myeloid leukemia (AML), 
CLL, MM and non-Hodgkin’s lymphoma (NHL) [296], it 

Table 12  Selected phase I-II clinical trials conducted with Obatoclax as a single (−single-) or combined therapeutic in untreated/
pre-treated or non-refractory(−)/refractory (Refrac) patients with Carboplatin (CARB), Etoposide (ETOP) or Topotecan (TOPOT) against 
extensive-stage small cell lung cancer (es-SCLC), Myelodysplastic Syndrome (MDS), Hodgkin’s Lymphoma (HL), Myelofibrosis (MFS), 
advanced Chronic Lymphocytic Leukemia (a-CLL), and Hematologic Malignancies (HM). Adverse effects are abbreviated as Neut 
(Neutropenia), Anem (Anemia), Euph (Euphoria), Dizz (Dizziness), Naus (Nausea), Atax (Ataxia) and Throm (Thrombocytopenia). Disease 
stabilization effects on patient numbers (expressed as a percentage (%) of the whole group or as positive responders/group size) are 
highlighted in weeks (>wks). Unavailable data for disease stabilization effects is highlighted by ‘-‘. The clinical trials reference numbers 
highlighted in bold (left column) and their corresponding references highlighted in the columns on the right (Ref )

Obatoclax Phase Patients Refrac Combined Disease Adverse Effects Stabilization Ref

NCT00684918 I/II Untreated – -single- AML Neut 4/19 for 11 cycles [408]

NCT00682981 II Untreated – CARB/ETOP es-SCLC Neut/Anem – [409]

NCT00413114 II Untreated – -single- MDS Euph/Naus 50% (> 12 wks) [410]

NCT00359892 II – Yes -single- HL Euph/Dizz 38% (> 8 wks) [411]

NCT00521144 II Pre-treated Yes TOPOT SCLC Throm/Neut/Anem/Atax 56% (Phase II) [412]

NCT00360035 II Pre-treated – -single- MFS Atax/Anem/Throm – [413]

NCT00600964 I/II Pre-treated Yes (22/26) -single- a-CLL Atax/Euph/Anem/
Throm

– [414]

NCT00438178 I N/A Yes -single- HM Neut/Anem/Throm – [415]

Table 13  Selected phase I-II clinical trials conducted with LC-161 as a single (−single-) or combined therapeutic in pre-treated or 
refractory (Refrac) patients with Paclitaxel (PAC), against Advanced Solid Tumor (AST) diseases (Dis.) and Outcomes for Maximum 
Tolerated Doses (MTD) are highlighted. Adverse effects (Adv. Effects) are highlighted as Neut (Neutropenia), Gastrointestinal symptoms 
(GI), Diarrhoea (Diar), Nausea (Nau), Vomiting (Vom) and Anemia (Anem). Objective Response Rates (ORR), Partial Responses (PR), 
Progressive Disease (PD) and disease stabilization effects (Stabil.) are highlighted as percentage (%) positive-responders. The clinical 
trials reference numbers highlighted in bold (left column) and their corresponding references highlighted in the columns on the right 
(URL/Ref ). Biomarker assessments (Bio.M) are highlighted and unavailable data is highlighted by ‘-‘

LCL-161 Phase Patient Refrac Combined Dis. Outcomes Adv. Effects ORR Stabil. Bio.M URL/Ref

NCT01240655 Ib Pre-treated Yes PAC AST MTD Neut/GI 27.6% PR; 25% PD 36.8% – www.​novct​rd.​com

NCT01968915 I/II – – -single−/
PAC

AST – Neut/Diar DISC. – – www.​novct​rd.​com

NCT01098838 I/II Pre-treated – -single- AST MTD Naus/Vom/
Anem

0% ORR 19% cIAP [418]

http://www.clinicaltrials.gov
http://www.novctrd.com
http://www.novctrd.com
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was ultimately awarded US Food and Drug Administra-
tion (US FDA) and European Medicines Agency (EMA) 
approval for treating CLL patients harboring the 17p or 
p53 mutations [445].

As a mono-therapeutic, Venetoclax has also been 
reported to be effective against other lymphomas with 
high Bcl-2 expression levels, as in MCL, myeloma, 
refractory AML [444], follicular lymphoma and some 
diffuse large B-cell lymphomas [446], whereby the dose 
administered could be correlated with expression levels 
of Mcl1 and Bcl-xL [447]. Over the last 3 years a num-
ber of follow-up trials have been published, aimed at 
defining its use against drug resistance, with some very 
encouraging outcomes based on its combined use with 
other therapeutics such as DNA damaging agents, anti-
CD20 antibodies (such as Rituximab), hyper-methylating 
agents, kinase inhibitors, Mdm2 inhibitors, proteasome 

inhibitors, and in conjunction with inhibitors targeting 
the anti-apoptotic proteins Bcl-xL and Mcl1 [448]. At a 
time when there are a plethora of on-going clinical trials 
involving Venetoclax (www.clinicaltrials.gov), its com-
bined use with Rituximab is showing some very prom-
ising outcomes with complete remissions recorded for 
51% of relapsed CLL patients [449], and it is also leading 
the way for use with patients encoding specific genetic 
biomarker aberrations (NCT02391480, NCT02055820, 
NCT02187861, NCT01685892, NCT01594229, 
NCT01794507, NCT01994837, NCT01328626), and 
where serious side effects (such as neutropenia and 
thrombocytopenia) are being managed with the growth 
factor prophylaxes (NCT02265731, NCT02055820, 
NCT01889186). Collectively, such findings encourag-
ingly highlight the potential of Venetoclax as a develop-
ing model for the treatment of hematological cancers, 

Table 14  Selected phase I-III clinical trials conducted with Venetoclax (V) as a single (−single-) or combined therapeutic in untreated/
pre-treated or non-refractory(−)/refractory patients (Refrac) with Mivebresib (Miv), Rituximab and Cyclophosphamide, Doxorubicin, 
Vincristine, and Prednisone (R-CHOP), Bendamustine (BEND) Rituximab (RIT) Obinutuzumab (OBIN), Cytarabine (CYT), Ibrutinib (IBU) 
Rituximab (RIT), Bortezomib (BORT) and Dexamethasone (DEX) against Acute Myelogenous Leukemia (AML), Large B-cell Lymphoma 
(L-BCL), Follicular non-Hodgkin’s Lymphoma (FnHL), Chronic Lymphocytic Leukemia (CLL), Non-Hodgkin’s Lymphoma (NHL), Multiple 
Myeloma (MM). Objective Response Rates (ORR), Complete Responses (CR) and Partial Responses (PR), expressed as percentage 
responders (%) are highlighted for disease progression (R/R) patients against R/R with 1/L (1 year treatment) patients. The clinical trials 
reference numbers highlighted in bold (left column) and the corresponding references highlighted in the column on the right (Ref ). 
Studies where patients were profiled (and their numbers) are highlighted in the Biomarkers column as percentages (%) and ‘-‘indicates 
no profiling

Venetoclax Phase Combined Patients Refrac Disease ORR, CR, PR Biomarkers Ref

NCT02391480 I/II Miv Pre-treated Yes AML 6.66% CR; 6.66% PR HEXIM1, DCXR, ITD/
TKD, PTPN11

[423, 424]

NCT02055820 II R-CHOP Pre-treated – L-BCL – Bcl-2, MYC [425] [426]

NCT02187861 II BEND(B)/
RIT (R)

Untreated (28 d) Yes FnHL 75% V + BR; 69% BR 
(untreated)
4% V + R (non-
Refrac) + 19% V + R 
(Refrac)

Bcl-2/
Mcl1

[427]

NCT02265731 II RIT (R) Pre-treated Yes CLL 100% (V, ORR); 66.7% 
(V + R, ORR)
16.7% (V, CR) + 50% 
(V + R, CR)

– [428]

NCT01685892 Ib OBIN Untreated Yes CLL 95% (R/R, ORR); 100% 
(1/L, ORR)
37%, (R/R, CR) + 78% 
(1/L, CR)

IGHV, P53, B2 MG, 
CD38

[429]

NCT02287233 Ib/II CYT​ Untreated – AML 62% CR – [430]

NCT02756897 II IBRUTINIB Untreated – CLL 88% CR – [431]

NCT01594229 Ib BEND/RIT – Yes NHL 65% ORR (30%, CR; 
35%, PR)

Bcl-2 [432]

NCT03755947 III RIT Pre-treated Yes 17p−/TP53−/IGHV-
CLL

92.3% ORR; (17.48%, 
CR)

– [433–439]

NCT01794507 Ib BORT/DEX Pre-treated Yes MM 67% ORR Bcl-2 Bcl-xL, Mcl1, [440]

NCT01889186 II -single- – Yes del17p-CLL 70% ORR 17P del (50.3%) [441–443]

NCT01994837 II -single- Pre-treated – AML 19% ORR (6% CR) Bcl-2, Bcl-xL, BH3 
Profiling, Mcl1

[444]

NCT01328626 I -single- – Yes CLL 79% ORR (20% CR) 17Pdel [435, 443]
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and thus paving the way for its further testing on solid 
tumors.

Mcl1‑inhibitors
Although genetically elevated Mcl1 levels have been 
reported in many tumor types [26], it has been impli-
cated in therapeutic resistance of breast and lung cancers 
[450, 451], with some studies showing that Mcl1 expres-
sion can mediate resistance to Navitoclax or Veneto-
clax [70, 99, 452], Gemcitabine, Vincristine and Taxols 
[453–455]. To date 36 clinical trials have been registered 
utilizing Mcl1 inhibitors (www.​clini​caltr​ials.​gov.​uk), 
amongst which 10 have been completed, 2 withdrawn, 
4 terminated and 8 are still recruiting. Of the completed 
trials related to targeting the Mcl1 protein (Table  15), 
S64315 has been tested as a single agent against MM and 
DLBCL (NCT02992483) in untreated relapsed/refractory 
patients to establish maximum tolerated doses and the 
results for which are to be published.

Similarly, trials for S64315 efficacy have also been con-
ducted in AML and MDS patients, and which showed 
no significant benefits outside of side effects such as 
nausea and familial neutropenia (NCT02979366). Con-
sequently, concerns regarding the safety of Mcl1 inhibi-
tion as a single agent, have arisen and are founded on the 
dependency of Mcl1 expression for the normal survival 
and growth of cells, as seen for mouse cardiomyocytes 
[456], hepatocytes [457] and neurons [458]. In support of 
this viewpoint, Mcl1+/− mice should mimic a phenotype 
consistent with 50% inhibition of Mcl1, but they appear 
normal and healthy, thus supporting the belief that Mcl1 
may also function independently of BH3-domain protein 
binding and regulation during cellular death [321, 459]. 
Another challenge for the development of specific Mcl1 
inhibitors has emerged from the rigidity of the Mcl1 
protein hydrophobic pocket and competitiveness for 
this posed by alternative high-affinity endogenous pro-
tein binding partners [460]. Nevertheless, several highly 
potent (sub-nanomolar) and selective inhibitors have 
emerged very recently, and one of which (UMI-77) shows 
excellent potential against pancreatic cell lines in  vitro 
and in xenograft pre-clinical models [461]. Similarly, 

pre-clinical findings for the inhibitor S63845 have been 
very impressive [74], against several cancer types includ-
ing melanoma, leukemia, lymphoma, and other solid 
cancers either as a single or combined agent, and further 
work here will indeed help in extending these findings 
towards clinical studies.

In summary, while serious side effects and solubility 
issues had been reported for the founding therapeutic 
member ABT-737, as seen from the findings presented 
in Tables 10, 11, 12, 13, 14, 15, derivatives of this appear 
to be showing incredible promise in treating hemato-
logical and solid cancers. With concerted efforts being 
made in the clinic to address side effects, the members 
that are showing steady progress from phases I to III, 
include Venetoclax and Obatoclax, with progress from 
studies evaluating Mcl1- and Smac- mimetics (or inhibi-
tors) maintaining steady momentum. When coupled with 
evaluating patients for genetic biomarker mutation pro-
filing, a very clear and interesting picture is coming into 
focus with regards to how some of these mimetics may 
have greater efficacy and potential in a personalized med-
icine context, and as encouragingly seen from clinical tri-
als highlighted in Table 14.

Mimetics: current considerations for solubility and delivery
In light of the above developing areas for therapeutic 
mimetics, key areas for therapeutic delivery have also 
been given greater consideration, particularly in response 
to solubility and delivery limitations arising from the 
ABT-737 paradigm. Classically, while therapeutic affin-
ity for the target protein is of paramount importance 
when designing an intervention strategy, additional fac-
tors affecting therapeutic availability, longevity, toxicity, 
and penetrability are also being given greater collective 
importance. In the next section, we selectively outline 
and evaluate the recent progress that has been reported 
in the areas of SMI and peptide therapeutics delivery, 
with a view to highlighting their usefulness for mimetic 
bioavailability and solubility, which (from the ABT-737 
paradigm) were serious considerations that hindered the 
immediate evaluation of such a promising therapeutic.

Table 15  Selected phase I clinical trials conducted with MIK655 or S64315 as a single (S) therapeutic, on untreated, and refractory 
(Refrac) diseases, such as Multiple Myeloma (MM), Diffuse Large Cell B-Lymphoma (DLBCL), Acute Myeloid Leukemia (AML) and 
Myelodysplastic Syndrome (AST) patients, for Maximum Tolerated Dose (MTD) are highlighted. Adverse effects (Adv. Effects) are 
highlighted as Nausea (Nau), Familial Neutropenia (F-Neut) and Diarrhoea (Diar). The clinical trials reference numbers are highlighted 
in bold (left column) and the Objective Response Rates (ORR) expressed as the percentage of patients who responded positively (%). 
Unavailable data is highlighted by ‘-‘

MIK655/S64315 Phase Single Patients Refrac Disease Outcomes Adv. Effects ORR

NCT02992483 I S Untreated Yes MM, DLBCL MTD – Unpublished

NCT02979366 I S Untreated (14 days) Yes AML, MDS MTD Nau/F-Neut/Diar 0% ORR

http://www.clinicaltrials.gov.uk
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As many SMIs are hydrophobic, which may present 
solubility and bioavailability challenges, the recently 
demonstrated successes of cell-penetrating peptide (CPP) 
nanoparticles [462] or nanofibers [463, 464] are emerg-
ing as synergistic alternatives for therapeutic solubiliza-
tion and the delivery of therapeutic cargo. Briefly, the 
combined use of monomeric CPP amphiphilic peptides 
with cholesterol can self-assemble, forming a shell-struc-
tured nanoparticle, that contains a hydrophobic cho-
lesterol core and a hydrophilic cationic exterior, which 
can enhance solubility, loading, delivery, and uptake of 
potential therapeutics [462]. Similarly, the potential of 
supramolecular nanofiber technology in this context 
is evidenced through them being able to enhance the 
incorporation of Paclitaxel from 6.8 to 41% [465], from 
a self-assembling amphiphilic peptide monomer [466]. 
Moreover, such applications can be extended to incorpo-
rate anti-inflammatories [467], multi-drug combinations 
[468] and imaging agents [469, 470], which collectively 
highlight the potential of such approaches.

While, CPPs can enhance cargo delivery of drugs 
using nanostructures [462, 471, 472], reduced specificity, 
resulting toxicity and reduced half-life can present chal-
lenges, as with most delivery systems of this nature [473, 
474]. In the context of delivering BH3-mimetics, one 
good example which demonstrates how some of these 
issues of specificity and delivery can be overcome, was 
published by Schnorenberg et  al. (2019), who utilized a 
BIM BH3-mimetic peptide amphiphile nanostructure to 
facilitate uptake for triggering the death of Hela and MEF 
cells [475]. Interestingly, a cathepsin B cleavage signal 
was also incorporated between the mimetic and hydro-
phobic tail to permit release of the mimetic at the site of 
enhanced ECM turnover, or within cells following endo-
somal and lysosomal uptake [475].

Importantly, the use of supra-molecular peptide deliv-
ery systems is being seen to offer certain advantages over 
classical delivery systems, such as high-concentration 
delivery of peptides, stabilization of peptide secondary 
structure, protection from proteolysis within the circu-
latory system, increased half-life, delivery of multiple 
therapeutics and enhanced uptake to the endosomal and 
lysosomal compartments [476, 477]. While carrier pep-
tides or CPPs can be utilized to help aide solubility and 
penetrability, an alternative targeting approach worth 
highlighting is the use of Elastin-like polypeptides (ELPs), 
which can form aggregates when heated externally and 
which can selectively accumulate in tumors [478–480]. 
Such an approach exploits the increased permeability of 
tumor vasculature during regional hyperthermia, during 
which a greater accumulation of macromolecular drug 
carriers loaded with single or combined therapeutics is 
permitted [481–483]. This permits enhanced cytotoxicity 

[484], which can be optimised further through CPP tag-
ging for delivery to cells in  vitro or in  vivo [485–488]. 
While some peptides may require certain conformations 
to achieve full inhibitory activity or cellular penetrability, 
pH dependent membrane insertion (pHLIPS) may offer 
additional potential benefits, from the perspective of cor-
recting structurally disorganized peptide therapeutics to 
adopt a favorable α-helical structure during their delivery 
and thereafter [489–491].

Lastly, the use of phospholipids [492] for self-assem-
bling micelles and the delivery of safe and non-immuno-
genic, hydrophobic drugs such as cyclosporine A [493], 
Paclitaxel [494] and peptides [495], can minimize the 
degradation or aggregation of cargo [496–499]. Encour-
agingly, such approaches can enhance therapeutic effi-
cacy through reduced extravasation from the circulation, 
while simultaneously reducing adverse off-target effects 
[495, 500]. However, such an approach does come with 
limitations that cannot go ignored, due to potentially 
diminished availability of the helical peptide therapeutic 
moiety, through masking and immunogenic effects from 
PEG, or limitations in peptide cargo lengths of 17–36 
aa [501, 502]. Nevertheless, as a way of highlighting the 
potential of this approach, Gossypol loaded micelles 
combined with A549 cells and radiation therapy in a 
xenograft mouse model [503], showed 7x greater efficacy 
against tumors than Gossypol alone [504]. Moreover, bio-
mimetic poly(lactic-coglycolic acid) (PLGA) combined 
with red blood-cell membrane (RBCm) as nanoparticles 
loaded with Obatoclax mesylate for the treatment of 
non-small-cell lung cancer, also showed significant suc-
cess in prolonging drug circulation in the presence of a 
reduced immune response against the particles [505].

Conclusions
In summary, while ABT-737 was discovered as an 
authentic BH3-mimetic, derivatives such as Navitoclax 
and Venetoclax hold great potential in treating hema-
tological cancers and even solid tumors when adminis-
tered with classical and conventional anti-cancer drugs, 
and the evidence for which is firmly grounded on basic 
research efforts at the pre-clinical level. In this context, 
Smac-mimetics have also emerged as being promising 
candidates for treating a range of cancer types, as seen 
from their combined compatibility with a broader range 
of anti-cancer drugs in pre-clinical models. However, 
the most promising potential therapeutics in pre-clinical 
models appear to be the Mcl1 inhibitors, particularly 
when administered in combination with Venetoclax, 
Navitoclax, death inducing ligands and conventional 
anti-cancer drugs.

Through extending such findings by way of clinical 
trials, the therapeutic efficacy of the most promising 
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anti-cancer drugs are coming into fruition, either as 
single or as combined agents. While resistance has 
always served to hinder the development of many ther-
apeutics for cancer, the off-target effects of such agents 
are becoming increasingly clear, and in some instances 
are also being harnessed through the development of 
dual-activity inhibitors, or as agents that can be syn-
ergistically utilized to overcome any resistance effects. 
From the above findings, the best example of this is 
highlighted by the effectiveness of Mcl1 inhibitors, 
when combined with the drugs Navitoclax or Veneto-
clax as co-therapeutics, and the findings from which 
are also being effectively aligned with specific genetic 
biomarkers of interest. Lastly, of emerging interest, in 
this context, are the BH3-mimetics Obatoclax and Gos-
sypol, and Smac-mimetics, the clinical importance of 
which are eager awaited.

As the focus of this article has revolved around the reg-
ulation of the intrinsic arm of apoptosis, the effects of the 
above mimetics and inhibitors towards other cell death-
inducing off-target effects, cannot be ignored. Such an 
assertion arises from what contribution these therapeu-
tics may offer in minimizing the protective effects of pro-
survival proteins, associated with the ER stress-response 
[403, 506], autophagy [507, 508], necroptosis [406] or 
cell cycle deregulation [509, 510]. When considered 
alongside how technologies have developed to improve 
solubility and the delivery of therapeutics, and thereby 
improving their efficacy, the initial limitations surround-
ing candidates (such as ABT-737), based on lack of sol-
ubility and availability, can be addressed with greater 
optimism. Such developments indeed offer greater cer-
tainty in pursuing mimetics as therapeutics and which 
follow a strongly-validated paradigm. From an equally 
important perspective, the presence of clinical side 
effects, such as thrombocytopenia have always appeared 
as a major source of concern. As mentioned, such effects 
can be minimized through molecular approaches, as in 
the instance of re-engineering Navitoclax to DT2216, 
and which acts through degrading Bcl-xL [383], thus 
reducing its off-target effects. Moreover, complimentary 
approaches through the use of prophylaxes are also being 
implemented, as effective management strategies within 
the clinic.

When considered together, the previous 20-30 years of 
mimetics research have indeed come a long way, whilst 
occupying a vast area of development in cancer treat-
ment, and which lay very strong technological foun-
dations for the future development of novel single-, 
combined- or dual- action therapeutics, with personal-
ized medicine being well positioned at the forefront of 
such endeavors.
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