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Abstract 

Background:  Lung cancer is the leading cause of cancer death, partially owing to its extensive heterogeneity. The 
analysis of intertumor heterogeneity has been limited by an inability to concurrently obtain tissue from synchronous 
metastases unaltered by multiple prior lines of therapy.

Methods:  In order to study the relationship between genomic, epigenomic and T cell repertoire heterogeneity in 
a rare autopsy case from a 32-year-old female never-smoker with left lung primary late-stage lung adenocarcinoma 
(LUAD), we did whole-exome sequencing (WES), DNA methylation and T cell receptor (TCR) sequencing to character‑
ize the immunogenomic landscape of one primary and 19 synchronous metastatic tumors.

Results:  We observed heterogeneous mutation, methylation, and T cell patterns across distinct metastases. Only 
TP53 mutation was detected in all tumors suggesting an early event while other cancer gene mutations were later 
events which may have followed subclonal diversification. A set of prevalent T cell clonotypes  were completely 
excluded from left-side thoracic tumors indicating distinct T cell repertoire profiles between left-side and non left-
side thoracic tumors. Though a limited number of predicted neoantigens were shared, these were associated with 
homology of the T cell repertoire across metastases. Lastly, ratio of methylated neoantigen coding mutations was 
negatively associated with T-cell density, richness and clonality, suggesting neoantigen methylation may partially 
drive immunosuppression.

Conclusions:  Our study demonstrates heterogeneous genomic and T cell profiles across synchronous metastases 
and how restriction of unique T cell clonotypes within an individual may differentially shape the genomic and epig‑
enomic landscapes of synchronous lung metastases.
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Background
Lung cancer is the leading cause of cancer death, partially 
owing to its extensive heterogeneity [1, 2]. It has been 
proposed that this extensive heterogeneity results from 
successive clonal expansion and selection of the fittest 
clones influenced by genomic accumulation and somatic 
epigenetic alterations [3–6]. However, tumor evolution 
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may also be shaped by pressure from the immune system, 
which can prune the most immunogenic branches of the 
tumor [7].

T cells play a crucial role in preventing cancer devel-
opment through antigen-specific detection and destruc-
tion of malignant cells, though evolving tumors can 
eventually escape immune surveillance through a pro-
cess termed immunoediting [4, 8–11]. Few studies have 
addressed the impact of the T cell repertoire in shaping 
metastatic heterogeneity [12–14] with most work to date 
evaluating longitudinal changes spanning multiple time-
points and therapies. Though these studies offer crucial 
insights, they do not allow the evaluation of intrinsic 
intertumor heterogeneity in absence of selective pressure 
from therapy. Furthermore, to date, the analysis of inter-
tumor heterogeneity has been limited by an inability to 
concurrently obtain tissue from synchronous metastases 
unaltered by multiple prior lines of therapy [15–17].

Here, we sought to study the relationship between 
genomic, epigenomic and T cell repertoire heteroge-
neity in a rare autopsy case from a 32-year-old female 
never-smoker with left lung primary  late-stage lung 
adenocarcinoma (LUAD) with more than 20 synchro-
nous metastases. We observed heterogeneous mutation, 
methylation, and T cell patterns across distinct metasta-
ses including a set of prevalent T cell clonotypes which 
were completely excluded from left-side thoracic tumors. 
Our work further highlights neoantigen methylation as 
a potential mechanism driving immunosuppression and 
some of the hurdles facing the treatment of late-stage 
lung cancer.

Methods
Human subject research
We collected 20 tumor samples and one normal gastro-
intestinal (GI) tract  sample at autopsy. Collection and 
use of patient samples were approved by the Institutional 
Review Board of the University of Texas MD Anderson 
Cancer Center. Clinical information is presented in Sup-
plementary Table 1.

Sample collection
DNA of collected samples was isolated from FFPE tissues 
using the AllPrep DNA/RNA FFPE Kit (Qiagen, Hilden, 
Germany). Hematoxylin and eosin (H&E) slides of each 
case were reviewed by experienced lung cancer patholo-
gists under the microscope to assess the percentage of 
tumor tissues versus normal tissues. Tumor cell viability 
was also assessed by examining the presence of necrosis 
in the tissues. Only samples with enough viable tumor 
cells were selected for whole-exome sequencing (WES), 
methylation and immunoSEQ.

DNA preparation
Unstained tissue sections (10 μm thick) were depar-
affinized in xylene and 100% ethanol (twice in each for 
10 minutes). The macrodissected tumor areas of the 
deparaffinized tissues were placed into 1.5 mL collection 
tubes for DNA extraction. The tissue was next suspended 
with Buffer PKD and Proteinase K from the Allprep FFPE 
kit. After incubating at 56 °C for 15 min and on ice for 
5 min, the mixed solution was centrifuged for 15 minutes 
at 20,000 x g. Finally, the DNA samples were quantified 
by Nano Drop 1000 Spectrophotometer (Thermo Sci-
entific, Wilmington, DE, USA). The fragmentation sizes 
were evaluated by the Agilent 2200 Tape Station system 
using the Genomic DNA Screen Tape Assay (Agilent 
Technologies, Santa Clara, CA, USA).

Whole‑exome sequencing
Exome capture was performed on 500 ng of genomic 
DNA per sample based on KAPA library prep (Kapa Bio-
systems) using the Agilent SureSelect Human All Exon 
V4 kit according to the manufacturer’s instructions and 
paired-end multiplex sequencing was performed on the 
Illumina HiSeq 2000 sequencing platform. The average 
sequencing depth was 178x (ranging from 63x to 225x, 
standard deviation +/− 31).

Mutation calling
Tumor contents and major/minor copy number changes 
were estimated by Sequenza (v2.1.2) [18]. To control 
those FFPE caused artifact contaminations, somatic 
single nucleotide variants (SNVs) was first called using 
MuTect version 1.1.4 [19], VarScan 2 [20] and Strelka2 
[21] with default setting, respectively. Then, the fol-
lowing filtering criteria were applied to each callers: 1) 
sequencing depth ≥ 20× in tumor DNA and ≥ 10 × in 
germline DNA; 2) variant allele frequency (VAF) ≥ 0.02 
in tumor DNA and < 0.01 in germline DNA; 3) the total 
number of reads supporting the variant calls is ≥4; and 
4) variant frequency is <0.01 in ESP6500, 1000 genome 
and EXAC databases. Mutations called by Mutect with a 
LOD score < 10 were further filtered out, and those muta-
tions called by Strelka with a quality score below 35 was 
also filtered out. Finally, only those mutations were kept 
if called by any of the two tools and rescued if any were 
rejected but shared by at least two tumors. Identified 
missense mutations were manually reviewed using the 
Integrative Genomics Viewer (IGV)  version 2.3.61 [22, 
23].

Phylogenetic analysis
Ancestors were germline DNA assuming with no muta-
tions. The phylogenetic tree was generated as described 
[24]. A binary presence/absence matrix of all somatic 
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mutations detected was used as input for R package 
phangorn version 2.0.2 [25].

Neoantigen predictions
Nonsynonymous mutations were identified from WES 
profiling and the binding affinities with patient-restricted 
MHC Class I molecules of all possible 9- and 10-mer 
peptides spanning the nonsynonymous mutations were 
evaluated with the NetMHC3.4 algorithm based on 
HLA-A, HLA-B, and HLA-C alleles of each patient [26–
28]. Candidate peptides were considered as HLA binders 
when IC50 < 500 nM with high affinity binders presenting 
IC50 < 50 nM.

DNA methylation profiling and tumor–immune 
microenvironment deconvolution
Genomic DNA (approximately 500 ng) was bisulfite con-
verted using EZ DNA Methylation Kit (Zymo Research 
Corp. Irvine, CA, USA) following the manufacturer’s 
protocol. Bisulfite converted DNA materials were then 
processed and hybridized to the Infinium Human Meth-
ylation 450 k arrays (Illumina, San Diego, CA, USA) 
according to manufacturer’s recommendation. Preproc-
essing and initial quality assessments of the raw data 
were examined using the following R packages. Subset-
quantile within-array normalization (SWAN) [29] was 
used to normalize raw methylation values. IlluminaHu-
manMethylation450k.db annotation package was used to 
annotate the CpG probes location. Probe sets with a beta 
value above 0.3 were taken as methylated [30, 31]. Before 
any genomic and statistical analyses were conducted, we 
normalized and inspected the methylation data for the 
presence of substantial confounding batch effects. Cel-
lular deconvolution analyses were carried out using esti-
mated cellular fractions using MethylCIBERSORT [32].

TCRβ sequencing and comparison parameters
Immunosequencing of the CDR3 regions of human T cell 
receptor (TCR) β chains was performed using the proto-
col of immunoSEQ (Adaptive Biotechnologies, hsTCRβ 
Kit) [33–35]. Two sets of PCRs were performed on DNA 
extracted from the tissues collected. The initial PCR 
used a mix of multiplexed V- and J-gene primers which 
amplify all possible recombined receptor sequences 
from the DNA sample, and a second PCR design-
ing to add unique DNA barcodes to each PCR product 
was followed. After that, samples were pooled together 
with a negative and a positive control. The pools were 
then sequenced on an Illumina MiSeq platform using 
150 cycle paired-end protocol and sequence-ready prim-
ers. After finish the sequencing, the raw data were trans-
ferred to Adaptive Biotechnologies and processed into 
a report including those passed quality-check samples 

and a normalized and annotated TCRβ profile repertoire 
accordingly. Profile of TCR rearrangements is presented 
in Supplementary Data.

T-cell density in FFPE tissue samples was calculated by 
normalizing TCR-β template counts to the total amount 
of DNA usable for TCR sequencing, where the amount of 
usable DNA was determined by PCR-amplification and 
sequencing of housekeeping genes expected to be present 
in all nucleated cells. T-cell richness is a metric of T cell 
diversity, and it is calculated by on the T-cell unique rear-
rangements. T-cell clonality is a metric of T cell prolifera-
tion and reactivity, and it is defined as 1-Peilou’s evenness 
and is calculated on productive rearrangements by:

where pi is the proportional abundance of rearrangement 
i, and N is the total number of rearrangements. Clonality 
ranges from 0 to 1: values approaching 0 indicate a very 
even distribution of frequency of different clones (poly-
clonal), whereas values approaching 1 indicate a distinct 
asymmetric distribution in which a few activated clones 
are present at high frequencies (monoclonal). JI is con-
ceptually a percentage of how many objects of two sets 
have in common out of how many objects they have in 
total. JI = (number of rearrangements in common) / 
(total number of rearrangements). Statistical analysis was 
performed in R version 3.2. 

Statistical Analysis
Graphs were generated with GraphPad Prism 8.0. Spear-
man’s rank correlations were calculated to assess the 
association between 2 continuous variables. Kruskal-
Wallis tests were used for categorical variables with more 
than 2 levels. P-values less than 0.05 were considered to 
be statistically significant.

Results
Patient information
A 32-year-old female never-smoker presented to her 
primary care physician complaining of weakness in her 
upper right arm lasting for two weeks. Physical examina-
tion was unremarkable, other than grade 3 weakness in 
her right upper limb. Shortly after, she was hospitalized 
due to acute venous thromboembolism of this arm. She 
was started on anti-coagulants and underwent computed 
tomography (CT) scans of the chest, abdomen and pel-
vis and magnetic resonance imaging (MRI) of the brain 
as part of the work up. Numerous nodules were detected 
suggestive of extensive metastasis and a 1.9 cm left lung 
mass was consistent with a lung primary origin (Fig. 1a, 

1+

N∑

i

pilog2(pi)

log2(N )
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b). A liver biopsy revealed the diagnosis of poorly differ-
entiated LUAD. Core biopsy of left chest wall nodule also 
revealed poorly differentiated LUAD with tumor cells 
positive for pan-keratin and TTF-1 and negative for ER, 
PR, CDX2, WT1, PAX-8, synaptophysin and chromogra-
nin. The patient underwent palliative radiation therapy for 
C5-C7 spine metastases with 10 × 300 cGy and one dose 
of chemotherapy with carboplatin and paclitaxel while 
awaiting molecular profiling results. Her condition dete-
riorated rapidly and she expired 13 days following her sole 
dose of chemotherapy due to the disseminated metastatic 
cancer and cancer-associated complications including 
severe respiratory, cardiovascular and renal failure caused 
by Trousseau syndrome and embolic stroke despite con-
tinuing hydrocortisone combined with antibiotic therapy 
for the last two days preceding her death. An autopsy was 

performed and widely disseminated metastatic carcinoma 
involving multiple systems and organs was observed.

To understand the genomic and T cell landscape of this 
extensively metastatic LUAD, 20 tumor samples (Sup-
plementary Table  1) including the left lung (primary 
tumor, P), thyroid gland (M01), left pleural cavity (M02), 
left hilar lymph node (M03), left parietal pleura (M04), 
heart (M05), right lung (M06), right pleural cavity (M07), 
12th thoracic vertebra (M08), gastrointestinal (GI) tract 
(M09), liver (M10), 4 abdominal lymph nodes (M11–14), 
left adrenal gland (M15), two metastases in the right 
kidney (M16 and M17), left and right ovaries (M18 and 
M19) as well as one histologically normal sample from 
the GI tract were collected and subjected to WES, DNA 
methylation array and TCR sequencing.

Fig. 1  Synchronous metastatic tumors exhibit heterogeneous growth and somatic mutation and neoantigen patterns. a Anatomical map of 
representative biospecimen collection sites in the patient. b Representative CT and MRI scans of different resected tumors: primary lung tumor, 
cervical lymph node enlargement, liver metastasis and C5 spine compression fracture by metastasis. c Non-silent mutation counts in tumors. d 
Fraction of shared and unique non-silent mutations across tumors
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Distinct mutational profiles are seen across primary tumor 
and synchronous metastases
Overall, 228 non-silent mutations were detected with 
an average of 76 per sample (range = 57–98). The num-
ber of non-silent mutations varied between tumors, 
with only 10 shared across all 20 samples (Fig.  1c). Of 
these non-silent mutations, 170 (75%) were shared by at 
least two tumors while 58 (25%) were unique (Fig. 1d). 
When canonical cancer gene mutations were analyzed 
[36–38], commonly-mutated cancer genes included 
TP53, CDKN2A, ASXL1 and MET in this patient (Sup-
plementary Fig. 1a). Only TP53 mutation (chromosome 
17_7578382, stop gain, spectrum G- > C) was detected 
in all tumors suggesting TP53 mutation was an early 
genomic event, while other cancer gene mutations were 
later events which may have followed subclonal diver-
sification. We also constructed a phylogenetic tree to 
depict the genomic heterogeneity and evolutionary tra-
jectory of these metastatic tumors. As shown in Sup-
plementary Fig.  1b, the phylogenetic structure varied 
considerably between tumors highlighting profound 
genomic heterogeneity within this patient. We then 

utilized the Jaccard index (JI), which takes into consid-
eration the proportion of shared non-silent mutations 
between any two samples. The JI ranged from 0.14 to 
0.82 (average = 0.49) with more proximal tumors gen-
erally more genetically similar (Supplementary Fig. 1c). 
Homology between the primary and metastases ranged 
from 0.14 to 0.73 (average = 0.33), with the thoracic 
lesions including the left pleural metastasis, left hilar 
lymph node and right pleural metastasis exhibiting 
the greatest similarity with the primary tumor. Taken 
together, these results reveal marked genomic het-
erogeneity across different metastases within the same 
patient.

The T cell infiltrate in distant metastases is more dense, 
diverse and reactive
The crucial role of T cells in immunoediting led us to 
study the T cell repertoire to further investigate the 
spatial heterogeneity of T-cell responses [39, 40]. T-cell 
density, an estimate of the proportion of T cells within 
a tumor, ranged from 3 to 38% (average = 13%, Fig.  2a), 
while richness, a measure of T-cell diversity, ranged from 

Fig. 2  Characterization of T cell repertoire metrics across tumors. T-cell a) density, b) richness and c) clonality. d Correlation between T-cell density, 
richness and clonality. e Distribution of most prevalent TCR clonotype. The dominant TCR clonotype in left-side thoracic tumors (P, M02, M03 and 
M04) was CASSGTGSYNEQFF, while the dominant TCR clonotype in non-left thoracic tumors was CACRPGNEAFF
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4,168 to 23,487 unique T-cell rearrangements (aver-
age = 14,344 unique rearrangements, Fig.  2b). T-cell 
clonality, a measure of T-cell reactivity, ranged from 0.02 
to 0.05 (average = 0.04, Fig.  2c). All TCR metrics were 
positively inter-correlated (Density vs. Richness: r = 0.53, 
p = 0.02; Density vs. Clonality: r = 0.54, p = 0.02; Clonal-
ity vs. Richness: r = 0.54, p = 0.01, Fig.  2d). Compared 
to prior work from our group in an early-stage LUAD 
cohort [41], lower T-cell density (p < 0.05) and clonal-
ity (p < 0.0001) and higher richness (p < 0.0001) were 
observed in tumors from this patient (Supplementary 
Fig. 2a-e).

Tumors were then grouped anatomically. Non-thoracic 
tumors displayed higher T-cell density (p < 0.01), richness 
(p < 0.0001) and clonality (p < 0.01) than thoracic tumors 
(Supplementary Fig.  3a-c), perhaps owing to their ana-
tomical location away from the primary tumor  and its 
immunosuppressive influences    [42, 43]. Lymph nodes 
serve as sites of T cell priming, activation and modula-
tion, leading us to speculate that the interaction between 
metastatic cancer cells and T cells in lymph nodes may 
be distinct compared to other sites of metastases. How-
ever, no statistical differences were observed in relation 

to lymph node involvement (Supplementary Fig.  3d-f ). 
Taken together, these data suggest differences in T cell 
response based on anatomical site, that is, T cell exclu-
sion, suppression and a more focused T cell response in 
proximity to the primary tumor.

Distinct T cell repertoire profiles are associated 
with left‑side thoracic tumors
To evaluate T-cell responses in the tumors, we next 
focused on the most prevalent TCR clonotypes. Distinct 
clonotypes were detected in left-side thoracic tumors 
(left lung tumor, left pleural cavity, left hilar lymph node 
and left parietal pleura) compared to others. This result 
was intriguing considering bilateral pneumonia and leu-
kocytosis were observed, though more inflammation was 
noted in the left thoracic cavity than the right. Strikingly, 
the most prevalent clonotype in “other” tumors (CACR-
PGNEAFF) was entirely undetectable in left-side tho-
racic tumors (P, M02, M03 and M04) (Fig.  2e). Similar 
trends were also observed among the top 5 and 10 TCR 
clonotypes with certain clonotypes completely excluded 
from left-side thoracic tumors (Supplementary Fig.  4a-
b). These data illustrate spatial restriction even among 

Fig. 3  T cell repertoire heterogeneity is observed across differentially growing tumors. a Number of T cell clonotypes in the primary tumor (red), 
metastases (blue) or shared (purple). b Shared T cell clonotype proportions and c) frequencies between the primary tumor and metastases
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the most prevalent T cell clonotypes across synchronous 
metastases.

T cell repertoire heterogeneity is observed 
across differentially growing tumors
To gain deeper insights into TCR heterogeneity, we 
assessed the overlap between T cell repertoires across 
different tumors. We first compared the proportion (JI) 
and frequency of T cell clonotypes shared between the 
primary tumor and metastases. In accordance with the 
unique T cell clonotype pattern observed in tumors 
from the left side thorax, proportions and frequencies of 
shared T cells were much more similar between the three 
left thoracic metastases (M02, M03 and M04) and pri-
mary tumor (P) (Fig. 3a-c). T cell repertoire heterogeneity 
was evident across all tumors, with an average JI value of 
0.35 (ranging from 0.12 to 0.61) and more shared T cells 
between proximal tumors (Fig.  4a), significantly higher 
than in a previously published cohort of 11 multi-region 
localized non-small cell lung cancers (NSCLCs)  [44] 

(average 0.35 vs. 0.17, p < 0.0001) (Supplementary Fig. 5). 
Next, we studied the proportion and frequency of shared 
T cell clonotypes across all 20 tumors. In total, 599 T-cell 
clones were shared across all tumors, with proportions 
ranging from 3.0 to 15.4% (average = 5.39%) and frequen-
cies accounting for 11.9% to 21.5% of the T cell repertoire 
(average = 15.96%) (Supplementary Fig.  6a-b). Of inter-
est, both a greater proportion (p < 0.01) and percentage 
(p < 0.01) of shared T cell clones were observed in tho-
racic tumors compared to non-thoracic tumors (Supple-
mentary Fig. 6c-d).

Evolution of synchronous metastases may be shaped 
by the T cell repertoire
We next performed in silico prediction of HLA-
A-, −B-, and -C-presented neoantigens using Net-
MHC3.4 [26–28]. On average, 39 predicted neoantigens 
(IC50 < 500 nmol/L) were detected per tumor, with the 
most (n = 60) seen in the primary tumor and fewest 
(n = 20) in the thyroid gland. Only 11 high binding affinity 

Fig. 4  Evolution of synchronous metastases may be shaped by the T cell repertoire. a Quantification of T cell repertoire heterogeneity across 
tumors by Jaccard index (JI). b Quantification of predicted neoantigen heterogeneity across tumors by JI. c Correlation between T cell repertoire 
JI and predicted neoantigen JI. d Deconvolution of immune components and T cell subpopulations by MethylCIBERSORT. e Correlation between 
T-cell richness and estimated CD8+ Tcell fraction. f Correlation between T-cell clonality and estimated CD8+ Tcell fraction
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neoantigens were detected on average (IC50 < 50 nmol/L) 
with the most (n = 19) also in the primary tumor and 
least (n = 2) in the thyroid gland (Fig. 5a). This falls within 
range but below the average of 53 predicted neoantigens 
seen in non-smokers from TCGA (Fig. 5b). We then eval-
uated the relationship between the T cell repertoire and 
predicted neoantigens. Predicted neoantigen heteroge-
neity was also evident, with the average JI value of 0.44 
(ranging from 0.11 to 0.84, Fig. 4b), and a weak but statis-
tically-significant positive correlation between T cell rep-
ertoire and neoantigen homology (r = 0.12, p = 0.0162, 
Fig.  4c), which could suggest the distribution of T cells 
may be partially driven by their reactivity to shared neo-
antigens. Interestingly, ratio of methylated neoantigen 
coding mutations was negatively associated with T-cell 
density (r = −0.46, p = 0.0549), richness (r = −0.55, 
p = 0.0152) and clonality (r = −0.61, p = 0.0055) (Fig. 5c-
e), suggesting neoantigen methylation may contribute to 
immune suppression and potentially explaining the weak 
neoantigen associations with T cell repertoire homology.

To assess immune infiltration, we next performed 
cellular deconvolution analyses using MethylCIBER-
SORT (Fig. 4d) [32]. Unfortunately, no distinct immune 

cell infiltration patterns were noted in left-side thoracic 
tumors (P, M02, M03 and M04) (Supplementary Fig. 7). 
However, relative CD8+ T cell fraction was correlated 
with richness (r = 0.75, p = 0.0002) and clonality (r = 0.43, 
p = 0.063) (Fig.  4e, f ). Furthermore, CD8 to Treg ratio, 
which correlates with a more favorable outcome in cancer 
[45, 46], was also correlated with T-cell richness (r = 0.68, 
p = 0.0012) and clonality (r = 0.64, p = 0.032) (Supple-
mentary Fig. 8a-b). A negative correlation between CD8+ 
T cell fraction and methylated neoantigen coding muta-
tions was also observed (r = −0.48, p = 0.0391, Fig.  5e). 
These results highlight the greater proliferative potential 
of CD8+ T cells and suggest T cell reactivity and diversity 
may be mainly driven by the clonal expansion of CD8+ T 
cells at the patient level, as previously suggested by our 
group and others [47]. Overall, our findings suggest that 
the evolution of synchronous metastases may be shaped 
by the T cell response in absence of prior therapy.

Discussion
Metastasis is an evolutionary process shaped by the 
dynamic interactions between tumor cells and host fac-
tors including immune surveillance [48]. T cells play 

Fig. 5  Methylated neoantigen burden is inversely correlated with T cell repertoire metrics. a Total number of predicted neoantigens across tumors. 
b Comparison of predicted neoantigens between TCGA cohort and tumors in our study. Correlation between ratio of methylated neoantigen 
coding mutations and T-cell c) density, d) richness, e) clonality and f) relative CD8+ T cell fraction
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a pivotal role in mediating this process by recogniz-
ing antigens presented on MHC molecules at the sur-
face of tumors and carrying out cytotoxic responses 
against tumor cells harboring their cognate antigens [49]. 
Accordingly, much importance has been attributed to T 
cell infiltration in many solid tumors, with more T cells 
generally associated with a better prognosis [39, 50, 51]. 
However, recent studies have highlighted the impact of 
intratumor heterogeneity (ITH) and bystander T cells 
[52–54], and suggested that only ~10% of tumor-infiltrat-
ing lymphocytes are capable of recognizing antigens pre-
sented by the tumor they have infiltrated [55], prompting 
deeper investigations into the T cell repertoire. Our 
understanding of the role of genomic and immune het-
erogeneity in lung cancer has evolved in recent years, 
thanks to investigations by our group and others into dif-
ferences between regions of individual tumors, synchro-
nous metastases and between primary and metastatic 
tumors [44, 56–59] highlighting potential spatial and 
temporal factors influencing clinical outcomes [60, 61]. 
Here, we assess the characteristics of the T cell repertoire 
in a treatment-naïve non-smoking patient with synchro-
nous lung metastases and depict the interplay between 
the primary tumor and synchronous metastases [11, 44, 
62], revealing extensive immunogenomic intertumor het-
erogeneity across primary and metastatic sites.

In our study, clonal TP53 mutations were detectable in 
all tumors, suggestive of an early genomic event, in line 
with prior reports [24, 63]. Interestingly, a higher over-
lap in somatic mutations was observed across proxi-
mal tumors suggesting they are more genetically similar, 
potentially due to metastatic seeding from the primary 
tumor [64, 65]. Though our study focused on a sin-
gle patient, the overlap in mutational burden observed 
between synchronous metastases is in line with previous 
reports in lung [59], melanoma [66], kidney [67] and colon 
cancer [68]. Considering the role of somatic mutations in 
triggering T cell responses through the generation of neo-
antigens, this overlap suggests these somatic mutations 
may serve as potential therapeutic targets for vaccination 
or T cell engineering through targeting of unifying anti-
gens present across all synchronous tumors. This is sup-
ported by the modest but significant correlation between 
shared mutations and shared TCRs though additional 
studies are needed to confirm these hypotheses.

We observed lower T cell repertoire heterogene-
ity across synchronous metastases in our study than in 
our prior work assessing multi-region ITH of localized 
LUAD [44]. This difference could highlight the distinct 
resistance mechanisms at play in accelerated progres-
sion in our study versus more gradual progression in 
early-stage LUAD which may have allowed for divergent 
genomic evolution and immune editing over years. This 

is reinforced by the absolute restriction of certain T cell 
clonotypes to metastases surrounding the primary tumor, 
which could be reflective of the distinct antigenic envi-
ronments established in distal tumors. Unfortunately, 
our lack of deep immune phenotyping data precludes our 
ability to further investigate the role the distinct immune 
microenvironments, including chemokine gradients and 
receptors, which  may have played a role  in establishing 
these vastly distinct T cell microenvironments. However, 
the presence of shared T cell clonotypes could also be 
indicative of common responses against unifying anti-
gens displayed across synchronous metastases.

Aberrant methylation has been reported to be involved 
in tumorigenesis in a variety of cancers and its impact 
on anti-tumor immune surveillance are very complex 
[69–72]. DNA methylation could affect immune surveil-
lance directly by regulating the expression of potential 
neoantigens and/or immune-related genes thereby sup-
pressing anti-tumor immune responses [73] or indirectly 
via modifying chromosomal vulnerability for mutations 
and copy number alterations (CNAs), both of which are 
well known to influence the tumor immune microenvi-
ronment [74–76]. A high level of hypomethylation could 
also lead to a high CNA burden which has been asso-
ciated with a cold tumor immune microenvironment 
therefore facilitating immune evasion. Conversely, a high 
level of hypomethylation is associated with an increased 
mutational burden, which could increase tumor immu-
nogenicity [74]. However, in the end, the selected cancer 
cell clones of late-metastases could escape immunosur-
veillance through the cumulative effects of these molecu-
lar aberrations. Recently, considerable progress has been 
reported in the identification of protein factors with a 
highly conserved DNA interaction surface, termed the 
methyl CpG-binding domain (MBD) [77]. MBD proteins 
could couple DNA methylation to transcriptional repres-
sion therefore silencing tumor suppressor genes that are 
hypermethylated at their promoter CpG islands in cancer 
cells [77]. MBD1 silences the IRF8 gene, which is a central 
mediator in the IFNγ/STAT1 signaling pathway govern-
ing the establishment of immune responses [78]. There-
fore, disrupting MBD1-mediated silencing could enhance 
immune surveillance. Interestingly, in the current study, 
the ratio of methylated neoantigen coding mutations was 
negatively associated with T-cell density, richness and 
clonality, even at an individual level. One could therefore 
hypothesize that therapeutic agents modulating methyla-
tion could potentially reprogram the immune microen-
vironment and could exhibit some potential in treating 
these tumors.

Our study does exhibit certain limitations, including its 
focus on a single patient. However, analysis of several syn-
chronous tumor sites from a single patient with advanced 
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disease in absence of heavy pre-treatment is rarely pos-
sible due to the lack of clinical indication. Unfortunately, 
deeper analysis of underlying mechanisms, immune cells 
and soluble factors influencing T cell trafficking and het-
erogeneity remain unclear due to the archival nature of 
these samples and will require further investigation. It is 
well known that DNA methylation is involved in differ-
entiation and activation of naïve CD4+ T cells [79, 80]. 
DNA methylation could release gene suppression upon 
demethylation of promoter regions regulating differential 
Th1 and Th2 cytokine secretion and therefore interrupt-
ing CD4+ T-cell polarization with effector phenotypes in 
these cells [81, 82]. Interestingly,   up to 27% of methyl-
ated genes in promoter regions are actively expressed in 
naïve CD4+ T cells and associated with immune response 
and T cell differentiation [83]. Moreover, a recent study 
by Bam M et al [84] found that the majority of differ-
entially methylated regions (DMRs) in tumor CD4+ T 
cells are located in the promoters followed by intergenic 
regions and introns. One could therefore assume that 
methylated genes in intergenic regions are also involved 
in naïve CD4+ T cell polarization and differentiation into 
specific lineages. Unfortunately, we were unable to inves-
tigate the impact of DNA methylation on the immune 
system and how genes in promoters or intergenic regions 
regulate CD4+ T cell differentiation and activation in our 
cohort due to a lack of metastasis-paired normal tissue 
controls.

Despite these limitations, our study provides impor-
tant evidence of differential tumor-immune responses 
co-existing in metastases within the same individual, 
related not only to molecular alterations. As a result, 
our findings may also partially explain the challenge of 
treating late-stage lung cancer due to the heterogeneity 
of metastases. Additional genomic, transcriptomic and 
immune studies in patients with synchronous metasta-
ses could help shed light on these and other mechanisms 
at play and provide therapeutic insights into late-stage 
NSCLC. Lastly, our study demonstrates heterogeneous 
immunogenomic profiles across synchronous metastases 
and provides important evidence of differential tumor-
immune responses co-existing in metastases within the 
same individual, partially resulting in the challenge of 
treating late-stage lung cancer. These results advocate 
for combination regimens with drugs exhibiting distinct 
mechanisms of action, e.g. concurrent chemotherapy 
with immunotherapy or anti-PD-1 plus anti-CTLA-4 
[85] to eradicate cancer cells displaying different immu-
nogenomic features to improve survival of patients with 
synchronous  lung cancer metastases [66]. Ideally, biop-
sies of multiple sites should be considered when feasible 

to identify common neoantigens across different disease 
sites, which could be targeted therapeutically. Interest-
ingly, a shared TP53 mutation was identified across all 
tumor lesions and the patient was found to express 
HLA-A*02:01. Recent work has revealed that TP53-
derived neoantigens can be targeted using Bispecific T 
cell Engagers (BiTEs), highlighting a potentially effective 
therapeutic option for this patient [86]. Under most cir-
cumstances, however, multi-site biopsy is not clinically 
safe or practical. Alternatively, canonical cancer gene 
alterations, which are often present in all cancer across 
difference sites [87], are appropriate targets. Moreover, 
with the caveat of variable detection sensitivity, liquid 
biopsy is less impacted by tumor heterogeneity [88, 89], 
and may  therefore provide a holistic view of molecular 
features across different metastatic sites to complement 
molecular profiling from tumor biopsies.

Conclusion
In summary, in this study, we present the heteroge-
nous  immunogenomic landscape of one primary tumor 
and 19 synchronous metastases from a minimally-
pretreated young female never-smoker with late-stage 
LUAD. Only a TP53 mutation was detected in all tumors 
suggesting it was an early genomic event while other can-
cer gene mutations occurred at later times.  Fewer less 
diverse and reactive T cells infiltrated the metastases 
nearest to the primary tumor, and a set of prevalent T cell 
clonotypes were excluded from left-side thoracic tumors 
further suggesting immune escape near the primary site. 
Furthermore, shared predicted neoantigens were asso-
ciated with homology of the T cell repertoire across 
metastases. Lastly, ratio of methylated neoantigen coding 
mutations was negatively associated with T-cell density, 
richness and clonality, suggesting neoantigen methyla-
tion may partially drive immunosuppression. Our study 
demonstrates heterogeneous genomic and T cell profiles 
across synchronous metastases and how restriction of 
unique T cell clonotypes within an individual may differ-
entially shape the genomic and epigenomic landscapes of 
synchronous lung metastases.
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