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Abstract 

Background:  Large immunogenomic analyses have demonstrated the prognostic role of the functional orienta-
tion of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric 
counterpart.

Methods:  We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 
patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and 
rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), 
which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clus-
tered more than 100 well characterized immune traits to define immune subtypes and compared their outcome.

Results:  A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification 
but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously 
described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with 
distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the 
wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the 
WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS.

Conclusions:  We demonstrated that extracranial pediatric tumors could be classified according to their immune dis-
position, unveiling similarities with adults’ tumors. Immunological parameters might be explored to refine diagnostic 
and prognostic biomarkers and to identify potential immune-responsive tumors.
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Background
Cancer is one of the leading causes of death in children 
worldwide, and the recorded incidence tends to rise 
with time [1]. In the US [2], and in other high-income 

countries [3], cancer is the leading cause of death by dis-
ease past infancy among children.

The overall incidence rates of childhood cancer vary 
between 50 and 200 per million children across the world 
[1]. The most common categories of childhood cancers 
include leukemias, brain tumors, lymphomas, neuro-
blastoma and nephroblastoma (Wilms tumor, WLM) [4]. 
Solid tumors comprise almost half of the cancer cases [5]. 
Neuroblastoma (the most frequent pediatric extra-cra-
nial tumor) and WLM are tumor types that occur almost 
exclusively in children [6].
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Although major progress has been made in the treat-
ment of pediatric cancers since the 1960s, and despite the 
intensification of treatment, contemporary progress has 
been limited or absent [7–9]. For those where the disease 
relapses, survival remains poor and for patients present-
ing with non-invasive tumors, surgical intervention can 
cause major long-term consequences. In addition, many 
children with high-risk cancers  experience severe, life-
threatening, or fatal drug toxicity during their medical 
treatment [10].

The implementation of immune checkpoint inhibitors 
that unleash natural anti-tumor immunity has changed 
the therapeutic scenario of cancer patients, especially 
in adults [11]. One of the major factors associated with 
responsiveness to immune checkpoint inhibition is the 
availability of neoantigens, which is the function of the 
total number of non-synonymous mutations (tumor 
mutational burden) [9, 12]. Pediatric cancers display 
overall a low mutational burden [13] and not surprisingly, 
the activity of immune checkpoint inhibitors in this set-
ting has been extremely limited [14]. In this respect, the 
FDA, for instance, has approved the use of checkpoint 
inhibition (PD1 blockades) for the treatment of children 
with mismatch repair deficient, microsatellite unsta-
ble, or hypermutated tumors [15], independently of the 
tumor histology. However, immune-mediated cancer 
cell recognition and killing might occur independently 
of the availability of mutated antigen, and other forms 
of immunotherapy might be exploited in tumors with 
low mutational load [16], including pediatric cancers. 
These include for instance T-cell or NK-cell based adop-
tive therapy [17], vaccines directed at non-mutated anti-
gens, and oncolytic therapy, alone or in combination with 
checkpoint inhibitors [18] [19]. These approaches have 
demonstrated encouraging results in pre-clinical mod-
els [17–19], but clinical successes using immunotherapy 
have been only obtained in neuroblastoma, a tumor type 
for which observed spontaneous remissions are likely 
mediated by cellular immunity [20, 21]. In high-risk 
patients, complementing standard therapy with dinu-
tuximab, which targets the NBL-associated antigen GD2, 
interleukin-2 (IL-2) and granulocyte-monocyte colony-
stimulating factor (GM-CSF) increased event-free and 
overall survival [22] but is not curative for the majority of 
patients who will ultimately relapse and die [17].

In parallel with the results of the activity of immune 
checkpoint inhibition, studies in adult patients affected 
by solid tumors have shown that the density, loca-
tion, and functional orientation of the immune infil-
trate influence the risk of relapse and death after 
tumor resection [16, 23]. Notably, in colon cancer for 
instance, a robust and protective intratumoral cytoxic 

T-cell response can occur in absence of a high muta-
tional load [24, 25]. In addition, within tumor types, 
the associations between intratumoral T-cell infiltra-
tion and mutational load is in general weak or absent 
[26, 27], and mostly driven by extreme cases such as 
the heavily hypermutated tumors (mismatch-repair-
deficient/microsatellite unstable tumors) [28]. In fact, 
both T-cell cytotoxic signature and tumor mutational 
load are independently associated with better response 
to immunotherapy [29].

One of the signatures capturing a favorable T-cell/
cytotoxic anti-tumor immune response is the Immu-
nologic Constant of Rejection (ICR) [30–32]. The ICR 
consists of 20 genes that reflect activation of Th1 sign-
aling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and 
IRF1), expression of CXCR3/CCR5 chemokine ligands 
(CXCL9, CXCL10, and CCL5), cytotoxic effector mol-
ecules (GNLY, PRF1, GZMA, GZMB, and GZMH) 
and compensatory immune regulators (CD274/PD-L1, 
PDCD1, CTLA4, FOXP3 and IDO1) [28, 33]. The ICR 
has been associated with better prognosis in the breast 
cancer [33, 34], in which it could further stratify high-
risk patients defined by standard prognostic signatures 
used in the clinical practice [35]. Added prognostic 
value has also been observed in a large meta-analysis 
of gene expression data from patients with sarcoma 
[36]. Moreover, ICR modules have been associated with 
response to checkpoint inhibitions and other forms of 
immunotherapy, including adoptive therapy [37], vac-
cine therapy [38], and local immunotherapy (Imiqui-
mod) [39]. Overall, ICR modules have been described 
in the large majority of classifiers developed in the con-
text of immune checkpoint studies [40]. Large pan-can-
cer analyses of adult solid tumors by the TCGA have 
defined conserved modules driving discrete immune 
subtypes associated with differential survival, adding 
granularity to the described association between T-cell 
infiltration and favorable prognosis [41]. Moreover, 
metrics capturing the balance between activation of 
specific oncogenic pathways and immunologic signals 
could further used to increase the prognostic and pre-
dictive values of individual signatures [28, 42, 43].

A better understanding of the biology of childhood 
cancers, including the relationship between cancer 
cells and the immune system, is of paramount impor-
tance for the development of more effective therapeutic 
approaches and stratification systems in this setting.

Here, we performed a pan-cancer analysis pediatric 
solid tumors using transcriptomic data in the TARGET 
dataset. Specifically we tested the prognostic impact of 
the ICR and explored the existence of different immune 
subtypes, as previously proposed in the context of adult 
solid tumors [41].



Page 3 of 18Sherif et al. J Exp Clin Cancer Res          (2022) 41:199 	

Methods
All analysis was done in R version 3.6.1, software names 
are R packages unless stated otherwise.

Data acquisition and normalization
RNA-seq data for 5 pediatric tumors: Wilms tumor 
(WLM), neuroblastoma (NBL), osteosarcoma (OS), 
rhabdoid tumor (RT) and clear cell sarcoma of the kid-
ney (CCSK) from the TARGET pediatric dataset, which 
is published on the GDC portal website, were down-
loaded and processed using TCGAbiolinks (v. 2.14.1) 
[44]. Gene symbols were converted to official HGNC 
symbols using TCGAbiolinks, genes without symbol or 
gene information were excluded and this resulted in a 
pan-cancer expression matrix with 20,155 genes. Meta-
static tumor, recurrent primary tumor or blood derived 
samples were excluded, and a single primary tumor 
(TP) sample was analyzed for each patient.

RNA-seq gene counts were normalized using the 
TCGAanalyze_Normalization function from TCGAbi-
olinks, including within-lane normalization procedures 
to adjust for GC-content effect, between-lane normali-
zation procedures to adjust for distributional differ-
ences between lanes as sequencing depth and quantile 
normalized using TCGAbiolinks. After normalization, 
the pan-cancer matrix was split per cancer type and 
log2-transformed. The clinical data of the TARGET 
study was obtained from the GDC portal.

ICR classification
The gene expression data of the ICR signature used to 
cluster the patients from each cancer type and pan-can-
cer using the ConsensusClusterPlus (v.1.42.0) [45] with 
the following parameters: 5000 repeats, a maximum of 
six clusters and agglomerative hierarchical clustering 
with Ward.D2 criterion. The optimal number of clus-
ters was determined based on the Calinski-Harabasz 
index.

The three obtained clusters were annotated as ‘ICR 
High’, ‘ICR Medium’ and ‘ICR Low’, where ‘ICR High’ 
showed the highest expression of ICR genes and ‘ICR 
Low’ the lowest. ICR score was calculated for each 
sample, defined as the mean of the normalized, log2-
transformed gene expression values of the ICR genes. 
Heatmaps were drawn using the ComplexHeatmap 
(v.2.6.2) [46].

T-distributed stochastic neighbor embedding (t-SNE) 
plot was used as a dimension reduction technique on the 
complete RNA expression matrix using Rtsne (v. 0.15) 
[47] (settings perplexity = 15, theta = 0.5). t-SNE plots 
were annotated for cancer types and ICR clusters.

Survival analysis
Clinical files contain survival data and clinical param-
eters such as age at diagnosis, tissue type, vital status, 
disease stage and disease metastasis, amongst others. For 
the overall survival analysis, we used the time to death 
and time to last follow up, vital status. For the event free 
survival, we considered; 1) relapse, 2) progression, 3) 
second malignant neoplasm death, and 4) death without 
remission, as events. We performed survival analysis and 
plotted the Kaplan-Meier curves using the ggsurv func-
tion from survminer (v. 0.4.8) [48]. Patients with less than 
1 day of follow-up were excluded and survival data were 
censored after a follow-up duration of 10 years. Hazards 
Ratio (HR) between ICR Low and ICR High groups or 
between the six immune subtypes and the corresponding 
p-values were calculated using X2 test. Confidence inter-
vals (97.5% CIs) were defined using survival (v. 2.41–3) 
[49].

Cox proportional hazards regression analysis was per-
formed using Survival and visualized as a forest plot. 
Cancer types were added as a factor in the multivariate 
analysis. We applied the cox.zph function, to test the pro-
portional hazards assumption (PHA). The same method 
was used to correct for the clinical parameters that con-
tribute to the survival across immune subtypes in the 
high risk NBL without MYCN amplification cohort. 
These clinical parameters are the (Mitosis-Karyorrhexis 
Index) MKI (High, Intermediate and Low), Ploidy (dip-
loid and hyperploid), Age group (0-18 m,18 m-5y and 
above 5y). Forest plots were generated using forestplot 
(v.1.7.2) [50].

Immune cell subpopulation and oncogenic pathway 
enrichment analysis
To determine the enrichment of particular gene sets, 
that reflect either immune cell types or certain onco-
genic pathways, we performed single sample gene set 
enrichment analysis (ssGSEA) on the log2-transformed, 
normalized gene expression data using GSVA (v.1.38.2). 
Immune cell-specific signatures were used as described 
in Bindea et  al. [51] with slight modification. The den-
dritic cell (DC) signature was replaced by immature den-
dritic cells (iDC), plasmacytoid dendritic cells (pDC), 
myeloid dendritic cells (mDC) and DC. Additionally, the 
regulatory T-cell (Treg) signature was used as described 
in Angelova et  al. [52]. Gene sets that reflect specific 
tumor-related pathways were selected from multiple 
sources as described in detail in [33, 53, 54], and gene sets 
reflecting cancer related immune signatures were used as 
previously described by Thorsson et al. [41] .The associa-
tion between continuous gene set enrichment scores and 
survival was calculated as described above. Differences 
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between the HRs of signatures were illustrated in a heat-
map (ComplexHeatmap (v. 2.2.0)) and the p-values were 
calculated by the cox formula. Signatures with a p value 
> 0.1 across all tumors were excluded.

Comprehensive pediatric immune subtypes
ssGSEA was performed using 105 of the 108 previously 
described immune signatures [41]. Three signatures were 
excluded from the analysis due to missing gene expres-
sion information. Spearman correlation between the 
resulting enrichment scores was calculated and visual-
ized using corrplot (v.0.90). Signature modules were 
identified visually and then patients were clustered 
according to the ssGSEA enrichment of the 5 signatures 
representing the identified modules, previously identi-
fied by Thorsson et  al. Sample clustering was carried 
out using k-means clustering (km = 6, repeats = 10,000), 
using ComplexHeatmap. The gap statistics was used to 
calculate the optimal number of clusters.

Stacked bar chart from ggplot2 (v. 3.3.3) was used to 
show the percentage of each cancer type in the immune 
subtypes and the percentage of each immune subtype 
within each cancer type. Density plots from ggplot2 
were used to show the median of enrichment scores of 
selected immune signatures from the 105 signatures [41], 
in addition to the log2 values of HLA-1 and HLA-2 from 
the filtered normalized RNAseq matrix.

Gene expression correlation
Correlation matrices of ICR genes expression were gen-
erated by calculating the Pearson correlation of the ICR 
genes’ expression within cancer types and pan-cancer 
using the corrplot (v.0.90), CCSK was excluded from 
this correlation analysis because of the small sample size 
(n = 13). Spearman correlation was performed on the 
enrichment matrix of 105 tumor immune expression sig-
natures [41] and plotted using corrplot (v. 0.84). Correla-
tion matrices of NK-cells / CD8T enrichment scores and 
the enrichment score (ES) of selected oncogenic path-
ways were calculated using Pearson correlation and plot-
ted by ComplexHeatmap.

Immune checkpoints expression
We used a list of immune checkpoints, divided into 
activating and inhibitory. The median values of the 
log2 transformation of the normalized gene expres-
sion counts of these genes were used and plotted by 
ComplexHeatmap.

CIBERSORTx immune cells fractions
In order to compare the immune cell fractions between 
different immune subtypes, we analyzed the normalized 
gene expression data of the 408 pediatric samples using 

the CIBERSORTx website. The relative proportions of 
22 immune cell types within the leukocyte compartment 
(LM22) were estimated. Cell fractions were visualized in 
barcharts and boxplots using ggplot2. We summed the 
proportions of related immune cells together in ‘Aggre-
gates’ to facilitate comparisons [41]. Lymphocytes are 
the sum of B-cells naive, B-cells memory, T-cells CD4 
naive, T-cells CD4 memory resting, T-cells CD4 memory 
activated and T-cells follicular helper, T-cells regulatory, 
Tregs, T-cells gamma delta, T-cells CD8, NK-cells rest-
ing, NK-cells activate and Plasma cells fractions. Mac-
rophages are the sum of Monocytes, Macrophages M0, 
Macrophages M1 and Macrophages M2 fractions. Den-
dritic cells are the sum of Dendritic cells resting and Den-
dritic cells activated fractions. Mast cells are the sum of 
Mast cells resting and Mast cells activated fractions.

Results
The prognostic value of ICR differs across pediatric cancer 
types
We analyzed the expression profiles of patient sam-
ples from five distinct solid pediatric cancer types: 
WLM, NBL, OS, RT and CCSK from TARGET dataset 
(https://​ocg.​cancer.​gov/​progr​ams/​target). After exclu-
sion of the following patients: 20 OS patients, who 
were older than 18 years-old; one NBL patient, who did 
not have MYCN status information; one RT patient, 
whose sample clustered with NBL samples based on 
the whole transcriptome; we analyzed 408 patient sam-
ples (WLM (n = 118), NBL (n = 150), OS (n = 68), RT 
(n = 59), CCSK (n = 13)). The NBL cohort was sepa-
rated into three groups based on the annotated COG 
(Children’s Oncology Group) risk group and the MYCN 
gene amplification status: high risk NBL with MYCN 
amplification (n = 33), high risk NBL without MYCN 
amplification (n = 91), and Intermediate and low risk 
NBL (NBL-ILR) (n = 26), because these subgroups were 
shown to have distinct immune infiltration [55, 56]. 
Dimension-reduction using t-Distributed Stochastic 
Neighbor Embedding (tSNE) based on the whole tran-
scriptome also showed separation of NBL subgroups 
(Fig.  1A),(Wei et  al. 2018) therefore, we considered 
each subgroup as a separate cancer type in our analysis.

We used the expression of ICR genes to characterize 
the degree of the Th1/cytotoxic intratumoral response. 
The ICR genes exhibited high overall correlation with 
each other in most TARGET pediatric solid tumor 
cohorts, with a lower correlation in high risk NBL with 
MYCN amplification and in WLM (Supplementary 
Fig.  1). Samples from each cancer type were separated 
into three ICR clusters (“ICR High”, “ICR Medium” and 
“ICR Low”) (Supplementary Fig.  2A). While dimen-
sion reduction of the expression data shows no clear 

https://ocg.cancer.gov/programs/target
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segregation of samples by ICR clusters within each tumor 
type (Fig. 1B), a clear difference in the distribution of ICR 
scores across cancer types was observed (Fig. 1C). Lower 
ICR scores were found in WLM and CCSK, while RT 
had the highest ICR scores. Significant differences in ICR 
scores were observed across NBL subgroups (p < 0.00001) 
for high risk NBL without MYCN amplification vs Inter-
mediate and low risk NBL and high risk NBL with MYCN 
amplification respectively (Supplementary Fig.  2B), 
reflecting large immune orientation differences between 
samples within NBL. Substantially lower ICR scores were 
observed in high risk NBL with MYCN amplification and 
in intermediate and low risk NBL when compared to high 
risk NBL without MYCN amplification. This finding is 
consistent with previous reports of poor T-cell infiltra-
tion in high risk NBL with MYCN amplification [56, 57] 
[55] and higher T-cell infiltration in high risk NBL with-
out MYCN amplification [56]. Overall survival analysis 
of continuous ICR scores showed significant association 
of ICR scores with high survival rate in Osteosarcoma 
(p < 0.016) (Fig. 1D) and comparing the survival between 
the ICR clusters showed that in Osteosarcoma (OS), the 
ICR Low group had significantly lower overall survival 
(p < 0.001) (Fig.  1E) and event-free survival estimates 
(p < 0.05) (Supplementary Fig. 2D) compared to the other 
groups combined. The same pattern was found in high 
risk NBL without MYCN amplification where ICR High 
was associated with better overall survival compared to 
ICR Low (Fig.  1F). This pattern was reversed in WLM 
(Supplementary Fig.  2C), as has been observed in adult 
kidney tumors [28]. No significant association with sur-
vival was found in rhabdoid tumor or clear cell sarcoma 
of kidney (Kaplan Meier curve for CCSK not showed 
because of the low number of samples n = 13).

Since ICR was most prognostic in Osteosarcoma and 
high risk NBL without MYCN amplification, we pro-
ceeded to examine which tumor intrinsic attributes cor-
relate with immune infiltration, reflected by ICR score, 
in OS and high risk NBL without MYCN amplification. 
Tumor intrinsic pathways that correlated with ICR score 
in these tumors (Supplementary Fig. 3A) are TNFR1, PI3K 
Akt mTOR signaling, Immunogenic cell death, Apoptosis, 
mTOR and others, while signatures inversely correlated 

with survival in both tumors include barrier genes, mis-
match repair, proliferation, G2M checkpoints. Wnt/beta-
catenin signaling showed very strong inverse correlation 
with ICR in Osteosarcoma but not in high risk NBL with-
out MYCN amplification (Supplementary Fig. 3A).

We then examined the association of tumor intrinsic 
attributes with survival in these tumors, Wnt/beta-catenin 
pathway was significantly associated with a worse prog-
nosis in OS (p < 0.05) (Supplementary Fig.  3C). We did 
not observe this same association in high risk NBL with-
out MYCN amplification (Supplementary Fig. 3C). In this 
neuroblastoma subgroup, several pathways were associ-
ated with worse prognosis, such as Myc targets, Glycolysis, 
mTORC1, DNA repair, Mismatch repair, E2F targets, G2M 
checkpoints and proliferation (Supplementary Fig. 3C).

The functional orientation of infiltrating immune cells 
influences the clinical outcome of pediatric cancers
To explore the different immune characteristics of 
pediatric tumor types in more depth, we compared the 
enrichment of leukocyte subpopulations within and 
among cancer types (pan-cancer), using the gene expres-
sion signatures of previously published datasets [51, 52] 
(Supplementary Table  1), as described in the methods 
section. Signatures such as NK-cells, Tcm, TFH, Tem, 
CD8+ T-cells and neutrophils were significantly associ-
ated with better overall survival in the pan-cancer analy-
sis, while T helper and Th2 cells were associated with 
worse prognosis (Fig. 1G, Supplementary Table 2).

Compared with other cancer types, Osteosarcoma 
showed an immune active phenotype illustrated by 
increased mean enrichment of transcripts for dendritic 
cells (DC), macrophages, neutrophils, and mDC (Fig. 1H). 
Enrichment scores for some leukocyte populations were 
associated with significantly improved prognosis as TFH, 
DC, neutrophils, macrophages, monocytes, Th1 and reg-
ulatory T cells (Treg) (Fig.  1I), while B cell and gamma 
delta T-cell enrichments were associated with significantly 
worse survival in this cancer type (Fig. 1I).

In Neuroblastoma, T-cells, CD8+ T cells, Th17, NKT 
cells, Th1 cells, Treg cells, and DCs were significantly 
higher enriched in the high risk NBL without MYCN 
amplification group compared to high risk NBL with 

(See figure on next page.)
Fig. 1  Prognostic role of immune signatures in pediatric tumors. A tSNE plot of filtered normalized expression values annotated by pediatric cancer 
types. B tSNE plot of filtered normalized expression values annotated by ICR clusters. C Boxplot of the ICR score across pediatric tumor types. D 
Forest plot of the association of continuous ICR scores with survival across tumors (E) Kaplan-Meier overall survival curve for ICR High + medium 
(orange) versus ICR low (blue) in Osteosarcoma. F Kaplan-Meier overall survival curve for ICR High versus ICR low in high risk NBL without MYCN 
amplification. G Forest plot of Hazards ratio of immune subpopulations across different pediatric tumors. H Heatmap of enrichment scores of 
immune cells signatures. I Hazards ratio heatmap of these signatures, the color of the circle representing the HR; HR below 1 is red and above 1 is 
blue, the radius size representing the -log10 p value; Larger size has higher -log10 p value and more significant association with survival, the color of 
the background corresponding to the p value; if pink; p value is less than 0.05, if yellow; p value between 0.05 and 0.1 and the white means p value 
above 0.1
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Fig. 1  (See legend on previous page.)
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MYCN amplification (p < 0.05), TFH was high in the 
3 subgroups and showed significant positive associa-
tion with survival in the high risk NBL without MYCN 
amplification group. Gamma delta T cell (Tgd) enrich-
ment also showed high association with survival in high 
risk NBL without MYCN amplification group (p < 0.05). 
However, Th2 cells and NK CD56 bright cells were signif-
icantly higher enriched in the high risk NBL with MYCN 
amplification group compared to high risk NBL without 
MYCN amplification group (p < 0.05) and in intermedi-
ate and low risk NBL, a strong association of NK CD56 
bright cells with worse prognosis was seen (p < 0.05).

In kidney tumors, WLM and CCSK were character-
ized by low immune infiltration illustrated by a low ICR 
score, while RT showed the highest ICR score (Fig. 1B). 
Decreased infiltration was associated with better survival 
in WLM (Supplementary Fig.  1C); this reverse associa-
tion was previously observed in the adult kidney cancer 
[28]. Overall low enrichment of immune subpopulations 
was observed in WLM with no clear association with 
survival (Fig. 1H, I).

In pan-cancer, expression patterns consistent with 
enrichment of several immune cells were associated 
with favorable prognosis, including NK-cells, Tcm, TFH, 
Tem, CD8 T cells and Neutrophils, while the pattern 
was reversed in Th2 and T helper cells, consistent with 
similar observations in adult cancer. However, due to the 
small sample size of some cohorts, we could not identify 
consistent significant prognostic biomarkers in the leu-
kocyte populations across all cancers.

Identification of distinct immune subtypes of pediatric 
tumors
To further elucidate the impact of the cancer immune 
phenotypes in pediatric solid cancer, we expanded our 
analysis to a collection of previously published immune 
signatures. We performed ssGSEA on 105 immune sig-
natures and clustered them to define modules of highly 
correlated immune signatures (Supplementary Table  3). 
We identified 5 main clusters of signatures (5 modules). 
Interestingly, in each of these modules we could iden-
tify one of the representative signatures presented in 
Thorsson et  al. [41] (IFN-γ, TGF-ß, Macrophages, Lym-
phocytes, Wound healing) (Fig. 2A). This finding demon-
strates that modules of immune signatures in pediatric 
cancer showed a similar pattern of correlation as those 

identified in adult solid tumors, reflecting the robustness 
of these modules.

We then clustered the 408 patients based on the 
enrichment scores of these 5 representative immune gene 
signatures, into 6 immune subtypes (S1 to S6) with dis-
tinct immunologic orientations (Fig.  2B). Each subtype 
includes patients from several tumor types (Fig. 2C), and 
each tumor type consists of different immune subtypes 
(Fig. 2D). We generated density plots of each of the five 
representative immune signatures and of each of seven 
additional immune biomarkers that are known to reflect 
the immune orientation (Fig. 2E). This allowed us to bet-
ter interpret each immune subtype and label them based 
on their enrichment profiles (Table  1). S1 is referred to 
as Th2 dominant subtype as it has the highest Th2 and 
the lowest TGF-ß, Macrophage, Lymphocyte and IFN-γ 
signal. S2 was labeled the Inflammatory subtype since 
it exhibits the highest Th1-Th2 ratio, the highest HLA1 
expression and lowest wound healing enrichment. Since 
high TGF-ß stands out in S3, in addition to the low 
enrichment of Th1, Th17 we call this subtype Immu-
nologically quiet. S4 or the Wound healing subtype is 
dominated by the highest wound healing enrichment, 
shows high Th2 and Treg cells presence. The S5 subtype 
has increased TGF-ß and IFN-γ, ICR signatures, high 
Th1 and Th17 enrichment but seems to be immunologi-
cally impaired by high Macrophage presence and is thus 
referred to as Macrophage dominant. The last immune 
subtype, S6 or the Lymphocyte suppressed subtype, has 
an enrichment of almost all properties of a high immune 
infiltration (highest ICR) including counter-regulatory 
signals from Th2, Treg, downregulated HLA1, and Mac-
rophage presence. However, it is also characterized by 
high expression of immune checkpoints and exhaus-
tion markers, so we call it immune (or lymphocyte) sup-
pressed (Fig. 2E).

We compared the immune cell fractions across the 
immune subtypes using CIBERSORTx (Supplementary 
Fig. 5, Supplementary Fig. 6). High proportions of mac-
rophages were observed in S5, with increased M2 mac-
rophages proportions in S4, high proportions of mast 
cells observed in S3 and elevated proportions of lym-
phocytes were found in S2 which has the highest sur-
vival. In addition, it was very clear the high proportions 
of lymphocytes in S6 that characterized by the elevation 
of immune checkpoints and exhaustion markers which 

Fig. 2  Immune subtypes of pediatric tumors. A Spearman’s correlation of 105 cancer immune signatures. Highly correlated signatures are 
clustered into 5 modules (black rectangles). B Heatmap showing the enrichment of immune signatures for each patient. Tumors are clustered into 
6 subtypes based on the enrichment patterns. C Distribution of the cancer types within the immune subtypes. Colors represent the cancer types. 
D Distribution of the immune subtypes within TARGET pediatric tumors. Colors represent the immune subtypes. E Distributions of signature scores 
within the six immune subtypes (rows), with dashed line indicating the median

(See figure on next page.)
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suppress the effect of T lymphocytes and make it in an 
exhaustion status (Fig. 4B).

To further understand how each immune subtype con-
tributes to the overall immune response for each tumor 
type we generated the heatmaps in the Supplementary 
Fig. 7. The Rhabdoid tumor for example is mainly domi-
nated by the S6, S5 and S4 immune subtypes, which are 
characterized by the highest ICR enrichment scores. 
This in turn contributes to the high ICR scores observed 
in the RT. The Immune suppressed S6 subtype is char-
acterized by the enrichment of almost all properties of a 
high immune infiltration in addition to the signals from 
Th2, Treg, downregulated HLA1, Macrophage presence, 
immune checkpoints and exhaustion markers as previ-
ously demonstrated. While S5 (Macrophage dominant) is 
suppressed by very high M2 macrophage presence. Finally, 
S4 is suppressed by the increased expression of wound 
healing genes. This explains why a high ICR score is not 
associated with a better prognosis in these RT patients.

Immune subtype classification segregates tumors 
into distinct risk categories
Cox proportional hazard models demonstrated signifi-
cant violation of the model when adding the cancer type 
as a covariate, so we stratified the model for the cancer 
type and performed Cox proportional hazard regression 
analysis which showed significant differences in overall 
survival between subtypes (Fig. 3A). The best prognosis 
was observed for the Inflammatory subtype (S2) while 
the subtype with the worst survival was the Wound heal-
ing dominant subtype (S4). The lowest enrichment of 
Wound healing signature was observed in S2, the subtype 
with the best survival among other immune subtypes 
(Fig.  3A), suggesting an association of Wound healing 
signature expression with prognosis in pediatric tumors. 
In S2, in addition to the low enrichment of Wound heal-
ing, high Th1 and low Th2 infiltrations were observed, 
while the reverse (high Th2 and low Th1 infiltration) 
(Fig. 2E) was observed in S4. This observation corrobo-
rates the favorable prognostic role of a Th1 orientation of 
the tumor microenvironment in this setting. In order to 
assess whether the difference in survival across immune 
subtypes is due to the tumor type distribution between 
clusters, we performed a multivariate analysis using a 
Cox proportional hazards model including the cluster 
(immune subtype) and cancer type as co-variants, and we 
again found a significant difference in survival between 

S2 and S4 (p = 0.02), between S5 and S4 (p = 0.013), and 
between S6 and S4 (p = 0.0325), demonstrating the prog-
nostic impact of this immune stratification (Fig. 3B).

In order to test the prognostic value of our immune 
stratification within each tumor type, we compared over-
all survival between immune subtypes within each tumor 
(Fig.  3C-E, Supplementary Fig.  4). Interestingly, for high 
risk NBL without MYCN amplification tumors, we found 
significant differences between all the immune subtypes 
versus S4 (p < 0.05) which indicates the presence of sub-
groups with distinct immunological features within the 
high risk NBL without MYCN amplification cohort. The 
same survival pattern was observed for S4 in both Wilms 
and Rhabdoid tumors, and a clear difference in survival 
between the S3 and S5 subtypes were seen in Osteosar-
coma (p = 0.09) (Fig. 3E). For CCSK the number of sam-
ples was too small and therefore the K-M curve was not 
plotted. These observations highlight the immune hetero-
geneity within tumors and the importance of understand-
ing the immunological features of pediatric tumors and 
their subgroups in order to raise the therapeutic effect.

NBL is a heterogeneous tumor and different clinical 
parameters contribute to the survival of NBL [56, 58], 
as previously mentioned, a significant difference across 
immune subtypes within the high risk NBL without 
MYCN amplification was observed (Fig. 3C, D, Supple-
mentary Table 4), we performed multivariate analysis to 
correct for the contribution of other clinical parameters 
in the survival of NBL, a significant difference in survival 
was found between S2 (p = 0.0319) and S6 (p = 0.0452) 
compared to S4. Similarly, we evaluated subsetting other 
cancer types based on different clinical parameters, 
however, no meaningful results were found. (Figshare: 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​19731​910).

Immune checkpoints expression pattern varies 
across different immune subtypes
To understand the prognostic role of immune check-
points in pediatric tumors, we performed survival analy-
sis for checkpoint expression pan-cancer and across our 
immune subtypes. The CD276 gene was significantly 
associated with survival in pan-cancer analysis (Fig. 4A, 
Supplementary Table 5). We noticed that immune check-
points that are strongly associated with better progno-
sis as CD276, KIRD3DL1, VTCN1, C10orf54 (VISTA), 
are low enriched in S4 (Fig.  4B), while those associated 
with worse prognosis as LAG3, CD70, TNFSF4, IDO1, 

(See figure on next page.)
Fig. 3  Overall survival across Immune subtypes. A Kaplan-Meier overall survival curve for immune subtypes. B Forest plot showing HRs (overall 
survival) of immune subtypes; S1, S2, S3, S5, S6 versus S4, and p value corrected for cancer types. C Kaplan-Meier overall survival curves for immune 
subtypes within tumor types for high risk NBL without MYCN amplification. D Forest plot showing HRs (overall survival) of immune subtypes within 
high risk NBL without MYCN amplification; S1, S2, S5, S6 versus S4. E Kaplan-Meier overall survival curves for immune subtypes within Osteosarcoma

https://doi.org/10.6084/m9.figshare.19731910
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KIRD3DX1, CD28 and TNFSF9, were highly expressed 
in S4. To deeper understand the prognostic effect 
of the immune checkpoints’ expression within each 
immune subtype we generated an HR heatmap anno-
tated by immune subtypes (Fig. 4C). In S4 a unique pat-
tern of association with a worse prognosis was found 
with C10orf54 (VISTA) and CD86 (p 0.05–0.1). While 
TNFRSF9 was associated with worse survival in S4 
and S3. In pan-cancer significant association of CD70 
and LAG3 expression with poor survival was observed 
(p < 0.05). Some immune checkpoints show a reverse 
pattern of survival with different subtypes as C10orf54 
that associated with reverse favorable prognosis in S2, 
TNFRSF14 across S1 and S3 and TNFRSF4 across S2 and 
S6. These findings reflect the variation in the prognosis of 
immune checkpoints expression within different tumor 
types.

High expression of immune checkpoints was observed 
in the Leukocyte dominant subtype (S6) compared 
to other immune subtypes (Fig.  4B, D). This could be 
explained by the exhaustion status seen in this immune 
subtype which displays the highest enrichment of lym-
phocytes (Fig. 2E).

Activation of oncogenic pathways is associated 
with the differential immune disposition
We also examined tumor intrinsic differences between 
immune subtypes, by investigating the association 
between overall survival and the expression of tumor 
intrinsic pathways in pan-cancer (Fig.  5A, Supplemen-
tary Table 6) and across the immune subtypes (Fig. 5C), 
and comparing the enrichment of tumor intrinsic path-
ways between the 6 immune subtypes (Fig.  5B). A wide 
variety of pathways were differentially enriched between 
immune subtypes. Myc targets, DNA repair and oxida-
tive phosphorylation showed uniquely high enrichment 
in S4 compared to other groups. However, Wnt/beta-
catenin and TGF-ß showed a similar enrichment pattern 
among immune subtypes with increased enrichment in 
S3 and S5 (Fig.  5B). Interestingly, most of the pathways 
show a mirrored expression level between S2 and S4; for 
example, S4 was significantly higher in the enrichment 
of TGF-ß and Barrier genes compared to S2, while p38 
MAPK Signaling, ErbB2 ErbB3 Signaling, NOS1 Signa-
ture and SHC1/pSTAT3 Signatures were significantly 

highly enriched in S4 vs. S2 (p < 0.05). Within the immune 
subtypes, a significantly high association of some onco-
genic pathways with worse prognosis is seen exclusively 
in S4 as mTORC1, Myc targets, NOS1, ERK5, PI3K AKT 
(Fig. 5C).

Discussion
In this study we provide a comprehensive overview of 
the immunological landscape of pediatric tumors by dis-
senting immune-cancer interactions in relationship with 
clinical outcome. We previously showed that the Immu-
nologic Constant of Rejection (ICR), a signature that 
captures the presence of active immune-mediated tumor 
rejection, has predictive and prognostic value in the con-
text of adult cancer [28, 33]. We applied this signature in 
pediatric solid tumors to examine if it can also predict 
survival in pediatric tumors. We performed a per-cancer 
analysis of the 5 pediatric solid tumor types present in 
the TARGET cohort and found that the disposition of an 
immune active phenotype characterized by ICR high was 
associated with favorable prognosis in Osteosarcoma and 
high risk NBL without MYCN amplification. This associ-
ation with survival is also observed when both adult and 
pediatric Osteosarcoma are evaluated together (C. Zhang 
et al. 2020).

When we attempted to disentangle the mechanism 
involved in tumor immune evasion, WNT/β-catenin was 
found to be associated with poor immune infiltration and 
cancer immunosurveillance in many adult tumors [59]. 
Here, we found an inverse correlation of WNT/β-catenin 
pathway enrichment with immune infiltration (ICR 
score) in OS with a prognostic value in the same cohort, 
in which the high enrichment of WNT/β-catenin path-
way was associated with worse prognosis. In addition to 
the association with low immune infiltration and over-
all survival; a meta-analysis performed by Xie et al. sug-
gested that overexpression of β-catenin is an indicator of 
metastasis for osteosarcoma patients [60]. Several clinical 
trials are ongoing applying the combination of immuno-
therapy with WNT/β-catenin signaling inhibitors for the 
treatment of various tumors (Y. Zhang and Wang 2020).

As seen in OS, we demonstrated that high risk NBL 
without MYCN amplification was associated with 
significantly higher immune infiltration and demon-
strated the predictive value of the ICR signature in this 

Fig. 4  Immune checkpoints expression across Immune subtypes. A Pan-cancer Forest plot showing HRs (overall survival) and p-values of immune 
checkpoint expression. B Heatmap of log2-transformed expression of immune checkpoints aggregated by the median for each immune subtype, 
split into activator and inhibitor and annotated by immune subtypes. C Hazard ratio heatmap of these immune checkpoints, the color of the circle 
representing the HR; HR below 1 is red and above 1 is blue, the radius size representing the -log10 p value; Larger size has higher -log10 p value 
and more significant association with survival, the color of the background corresponding to the p value; if pink; p value is less than 0.05, if yellow; p 
value between 0.05 and 0.1 and the white means p value above 0.1. D Violin plots showing the log2 expression of immune checkpoints across the 
different immune subtypes

(See figure on next page.)
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sub-group of NBL. Recently, another signature focus-
ing on effector genes (5 granzymes combined with per-
forin) that reflects the level of cytotoxic immune cell 
activity, showed correlation with survival in high risk 
NBL without MYCN amplification subgroup of NBL 
patients while not in the other groups [56].

In contrast, ICR gene expression showed an associa-
tion with worse prognosis in Wilms tumor. This reverse 
association was also observed in adult kidney tumors 
like Kidney Renal Clear Cell Carcinoma (KIRC), Cer-
vical Kidney renal papillary cell carcinoma (KIRP), in 
which a reverse association was observed between the 
ICR High classification and survival (Roelands et  al. 
2020). These combined observations convincingly show 
that the immune infiltrate in pediatric tumors does 
impact the pediatric cancer prognosis and resembles 
what was found in adult cancer,

We then deepened our analysis and demonstrated 
that solid pediatric cancer samples can be meaningfully 
immune subtyped, comparable to what was achieved 
in adult cancer (Thorsson et al. 2018). When applied in 
the pediatric setting, the same 5 representative signa-
tures (INF-γ, TGF-β, Macrophages, Lymphocytes and 
Wound healing) identified in Thorsson et al. (Thorsson 
et  al. 2018), were found to also be at the cores of the 
5 main co-clustering modules of immune signatures in 
the combined TARGET cohorts. When we applied pan-
cancer clustering on the TARGET samples based on the 
enrichment scores of these 5 representative signatures, 
despite the low number of tumor samples available, we 
obtained 6 robust immune subtypes. These displayed 
distinct immune characteristics and significant differ-
ences in overall survival rate even after adjusting for 
cancer type. Some of these immune subtypes share 
similar immune features with adult tumors, like the 
‘Immunologically quiet’ subtype that is characterized 
by overall lower enrichment for T-cells and IFN-γ sig-
nature, or the ‘inflammatory subtype’, that is character-
ized by high Th1 enrichment, and which is associated 
with the best survival across all immune subtypes in 
pediatric and adult tumors.

High enrichment of the wound healing signature was 
associated with worse outcomes in adult tumors [41, 
61], we observed the same in pediatric tumors in which 

the wound healing dominant subtype (S4) showed the 
worst survival across the pediatric immune subtypes. 
Wound healing enrichment is accompanied by ele-
vated expression of angiogenic genes and high enrich-
ment of proliferation signature. S4 also showed high 
proportions of Macrophages shown by CIBERSORTx 
(Supplementary Fig.  6), especially M2 macrophages 
(Supplementary Fig. 5).

In addition, high Th1 and low Th2 infiltration were 
observed in S2, while the reverse pattern was found in 
S4, which suggests the association of Th1 infiltration with 
favor prognosis in these pediatric tumors, the results 
that obtained in different adult cancer types [28, 33, 41, 
62, 63]. Conversely, the Th2 was highly infiltrated in the 
wound healing subtype (S4) that is characterized by a 
worse prognosis and high proliferation rate, in agreement 
with the previous results in the adult cancer [41].

Furthermore, as we previously demonstrated, the 
Rhabdoid tumor is mainly dominated by S6, S5 and S4. 
These immune subtypes are suppressed by different 
mechanisms, either by: high Th2, Treg, immune check-
points and exhaustion markers in S6, or high M2 mac-
rophage presence in S5, or the increased expression of 
wound healing genes in S4. Looking at the ICR scores 
across the 6 immune subtypes (Fig. 2E), the highest ICR 
score was found in S6, S5 and S4. These observations 
highlight the importance of this more complex immune 
classification that captures the different characteristics 
of the immune microenvironment within the Rhabdoid 
tumor which the ICR score failed to capture.

When we look beyond the subtype at how underlying 
cancer intrinsic pathways interact with the immune sys-
tem, we noted a significantly higher enrichment of DNA 
repair pathways in the S4 subtype compared to the other 
subtypes (Fig.  5B). DNA repair pathways defects in dif-
ferent cancers provide therapeutic opportunities to kill 
cancer cells without affecting normal cells taking advan-
tage of the concept of synthetic lethality, which might be 
tested experimentally in these tumors [64–66].

Among the tumor intrinsic pathways that are highly 
enriched in S4 and associated with unfavorable progno-
sis is the mTORC1 signaling pathway. mTOR has criti-
cal roles in tumor progression, and mTOR complex 1 
(mTORC1), is composed of mTOR bind to Raptor, GβL, 

(See figure on next page.)
Fig. 5  Intrinsic selected oncogenic pathways across immune subtypes. A Pan-cancer forest plot showing HRs (overall survival) and p-values of 
selected oncogenic pathway enrichment scores. B Heatmap of the enrichment scores of selected oncogenic pathways, blue colors corresponding 
to lower enrichment and the red for the high enrichment scores, annotated by the 6 immune subtypes and pan-cancer. C Hazards ratio heatmap of 
these pathway enrichment scores, the color of the circle representing the HR; HR below 1 is red and above 1 is blue, the radius size representing the 
-log10 p value; Larger size has higher -log10 p value and more significant association with survival, the color of the background corresponding to 
the p value; if pink; p value is less than 0.05, if yellow; p value between 0.05 and 0.1 and the white means p value above 0.1
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and DEPTOR and could be inhibited by FDA approved 
drug Rapamycin [67]. We speculate that mTOR mecha-
nisms, targeted by novel generation mTOR inhibitors 
[68], could be tested experimentally in patients with high 
mTROC1 signaling expression.

The most renowned mechanism of tumor immune 
evasion is of course the immunosuppressive checkpoint 
molecules that downregulate immune cell function in 
the aftermath of an infection. We show here that high 
expression of IDO1 and LAG3 could be observed in the 
wound healing immune subtype (S4) which may contrib-
ute to the poorer prognosis associated with this subtype. 
IDO1 is an immune regulatory gene that was shown to 
recruit and activate myeloid-derived suppressor cells 
through a Treg-dependent mechanism that contributed 
to aggressive tumor growth and poor response to T-cell 
targeted therapy [69]. Lymphocyte Activation Gene-3 
(LAG3) on the other hand, has shown an immunomod-
ulatory role through suppressing T-cell activation and 
cytokine secretion, and as a result, it maintains immune 
homeostasis. Both checkpoints could be considered as 
potential immunotherapeutic targets for patients clas-
sified as S4 and S1 in where LAG3 is highly expressed, 
in combination perhaps with other immune checkpoint 
inhibitors [70].

In addition, we found that other immune checkpoints 
like Cluster of Differentiation 70 (CD70) and TNF Super-
family Member 9 (TNFSF9, aka 4-1BB-L), are highly 
expressed in S4 compared to other immune subtypes, 
although these checkpoints are identified as co-stimu-
latory T cell immune checkpoints and are members of 
the tumor necrosis factor receptor (TNFR) family. CD70 
has been shown to correlate with worse lung metastasis-
free survival in primary human breast cancer isolated 
CSCs [71], and found to enhance the invasiveness of dif-
fuse malignant mesothelioma of the pleura cells through 
MET–ERK axis activation in in-vitro experiments and 
in an immunodeficient mouse model [72]. It was shown 
that there is an unfavorable negative feedback function to 
downregulate inflammatory T cell responses obtained by 
T cell-derived CD70 through the upregulation of inhibi-
tory immune checkpoints and caspase-dependent T cell 
apoptosis [73].

We also demonstrated that most of the immune check-
points are highly expressed in S6 compared to the other 
subtypes, which could be further exploited as a therapeu-
tic target in this subset.

One of the major limitations of this study is the rela-
tively small sample size, which is however the reflec-
tion of the rarity of these tumors. Nevertheless, in spite 
of the small cohort, we observed significant differences 
across the subtypes suggesting a strong effect size for this 

immune-based classification, which could be clinically 
relevant.

Conclusions
In conclusion, we demonstrated that extracranial solid 
pediatric tumors can be classified according to their 
immune disposition, unveiling unexpected similari-
ties with adults’ tumors. Immunological parameters can 
be further explored to refine diagnostic and prognostic 
biomarkers and to identify potential immune-respon-
sive tumors. Significant differences in the expression of 
immune checkpoints across the immune subtypes, and 
the different association of immune checkpoints with 
survival highlight the value of stratifying pediatric solid 
tumors into different immune phenotypes. This is the 
first pan-cancer immunogenomic analysis in children.
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Boxplot showing the distribution of ICR scores in high risk NBL with MYCN 
amplification, high risk NBL without MYCN amplification, and Intermedi-
ate and low risk NBL (the p value was calculated by two-tailed t-test). 
(C) Kaplan-Meier of overall survival for ICR High versus ICR low in Wilms 
tumor. (D) Kaplan-Meier event free survival curve for ICR High + medium 
(orange) versus ICR low (blue) in Osteosarcoma. (E) Kaplan-Meier of overall 
survival for ICR High versus ICR low in Rhabdoid tumor.

Additional file 3: Supplementary Fig. 3. Intrinsic oncogenic pathways 
and immune infiltration. (A) Heatmap of Pearson correlation between 
enrichment score (ES) of oncogenic pathways and ICR in pan-cancer, 
Osteosarcoma and high risk NBL without MYCN amplification. (B) Forest 
plot of HR of oncogenic pathways enrichment in Osteosarcoma (C) Forest 
plot of HR of oncogenic pathways enrichment in high risk NBL without 
MYCN amplification.

Additional file 4: Supplementary Fig. 4. Overall survival across Immune 
subtypes. (A) Kaplan-Meier overall survival curve for immune subtypes 
within Wilms tumor. (B) Kaplan-Meier overall survival curve for immune 
subtypes within Rhabdoid tumor. (C) Kaplan-Meier overall survival curve 
for immune subtypes within high risk NBL with MYCN amplification 
tumors. (D) Forest plot showing HRs (overall survival) of immune subtypes 
within high risk NBL with MYCN amplification tumors; S1, S2, S3, S5 versus 
S6 (E) Kaplan-Meier overall survival curve for immune subtypes within 
Intermediate and low risk NBL tumors.
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of means of CIBERSORTx immune cells across the immune subtypes.
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portions (Aggregate) across Immune subtypes. (A) Barplot of the median 
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