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Abstract 

Background:  One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterog‑
enous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA 
molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not 
encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs 
play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation.

Aim of review:  The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, 
lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in 
prostate cancer progression were examined.

Key scientific concepts of review:  The aberrant expression of lncRNAs in prostate cancer has been well-docu‑
mented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among 
other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate 
tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. 
Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds 
such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce 
expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor 
at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be 
investigated in serum of prostate cancer patients as a reliable biomarker.
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Background
Prostate is a walnut-sized reproductive organ located 
within the pelvic canal caudal to the urinary bladder and 
cranial to penis. The incidence of prostate cancer is high 
among men with 1 in 7 men in US and 1 in 25 world-
wide diagnosed with this malignant condition in their 
lifetime [1, 2]. The enlargement of prostate that occurs 
with aging is called benign prostatic hyperplasia (BPH) 
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and is associated with symptoms including polyuria 
observed in men over 60 years of age [3]. Due to simi-
larities in histopathological and molecular presentations, 
BPH is considered as a phase in prostate tumor initiation. 
However, exact underlying mechanisms responsible for 
prostate tumor development from BPH have not been 
well understood [4, 5]. The incidence rate of prostate can-
cer is higher in developed countries due to availability 
of prostate specific antigen (PSA) testing for its diagno-
sis [6, 7]. Prostate tumor is among malignant tumors in 
men and newly published statistics demonstrate that it 
has an increase in incidence rate compared to 2020 with 
248,530 people diagnosed resulting to 34,130 deaths [8]. 
Thanks to advancement in the field of medicine in recent 
years, particularly in developed countries, a significant 
improvement in survival and prognosis of prostate tumor 
patients has been observed. This can be observed in the 
5-year survival rate of prostate tumor patients which 
stood at 97.8% in 2016, a significantly better record 
compared to 66.9% in 1975 [1]. Age, race, genetics, fam-
ily history, obesity, and smoking, among the most com-
mon ones are risk factors of prostate tumor development 
[9–11]. If the treatment of prostate cancer fails, it pro-
gresses to a new form known as castration-resistant pros-
tate cancer (CRPC) that is a problematic issue in clinical 
course and some major genes including androgen recep-
tor (AR), TP53, RB1, PTEN and DNA damage repair 
(DDR) undergo mutations in this form of prostate cancer 
[12–14].

There are a variety of modalities in prostate tumor 
therapy. Surgery is beneficial in initial steps of prostate 
cancer. For advanced and metastatic forms of prostate 
cancer, chemotherapy and its combination with radio-
therapy are utilized. Furthermore, due to dependence of 
prostate cancer cells on androgens, androgen-deprivation 
therapy (ADT) is extensively applied in its treatment. 
Immunotherapy including using immune checkpoint 
inhibitors, antibody-mediated radioimmunotherapy, 
antibody drug conjugates and bispecific antibodies is a 
new promising option in prostate cancer therapy [15–21]. 
However, due to the aggressive nature of prostate cancer 
cells, they acquire resistance to different therapies [22, 
23]. They can activate tumor-promoting signaling path-
ways to induce chemoresistance, radio-resistance, ADT 
resistance and immune-resistance [24–30]. Therefore, 
strategies should be applied in reversing therapy resist-
ance in prostate tumor, and this goal is achieved using 
pharmacological and genetic interventions [31–35]. Due 
to advances in field of genetics and bioinformatics, such 
molecular pathways have been recognized. Wnt, STAT3, 
Hedgehog (Hh), phosphatase and tensin homolog 
(PTEN), PI3K/Akt and NF-κB and SPOP are among the 
signaling networks undergoing abnormal expression in 

prostate cancer [36–44]. Noteworthy, non-coding RNAs 
(ncRNAs) are in special attention in prostate cancer due 
to their dual role in increasing/suppressing tumor pro-
gression [45–50].

Here, function of lncRNAs in prostate tumor is 
described in detail. It is started by an introduction about 
long non-coding RNAs (lncRNAs), their biogenesis and 
biological as well as their pathological functions. Then, 
we specifically discuss role of lncRNAs in progression 
rate (growth and migration), chemoresistance and radio-
resistance of prostate tumor cells. Furthermore, role of 
lncRNAs as upstream mediators in regulation of major 
molecular pathways in prostate cancer is discussed. 
Finally, we describe currently applied therapeutics in tar-
geting lncRNAs for prostate cancer therapy.

LncRNAs: Biogenesis and role in oncology
It has been reported that less than 2% of human genome 
is made up of genes encoding proteins, and other 98% of 
genome is transcribed to RNA without following the way 
to encoding proteins [51–55]. Although ncRNAs were 
considered as junk parts of genome, now it is obvious that 
ncRNAs possess functional roles in cells [56–62]. ncR-
NAs lack lengthy open reading frames and are divided 
according to their size. Small ncRNAs are non-coding 
transcripts with length less than 200 nucleotides and 
include miRNAs, siRNA and piRNA. On the other hand, 
RNA molecules with length more than 200 nucleotides 
are known as lncRNAs. Currently, up to 100,000 lncR-
NAs have been identified [63]. LncRNAs are uniquely 
expressed in various tissues and specific cancer types 
[64]. The inability of lncRNAs to encode proteins is due 
to lack of open reading frame (ORF) [65]. Mutations in 
ncRNAs are responsible for development of human can-
cer [66]. It appears that lncRNAs can be transcribed by 
RNA polymerase II, capped, polyadenylated and spliced 
[67]. The biogenesis of lncRNAs can be performed from 
promoter regions, exons, antisense sequences, enhancer 
sequences, untranslated regions (UTRs) such as 3/ and 
5/, introns, intergenic and intragenic regions of genome. 
Furthermore, lncRNAs can affect expression of their tar-
get using different actions. LncRNAs are able to function 
as signal, decoy, guide, scaffold and miRNA modulator in 
affecting biological processes and preserving homeosta-
sis [68]. Figure 1 provides a schematic representation of 
lncRNA function in cells.

The function of lncRNAs is dependent on their 
location in cytoplasm or nucleus of cells. Increas-
ing evidence demonstrates that lncRNAs located in 
nucleus are involved in gene modulation at epigenetic 
and transcription levels including histone modifica-
tion, DNA methylation, chromatin remodeling, and 
interacting with proteins and transcription factors in 
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nucleus [69–79]. On the other hand, there are lncRNAs 
located in cytoplasm that transcriptionally and post-
transcriptionally modulate gene expression. These 
kinds of lncRNAs can interact with miRNAs (acting as 
competitive endogenous RNA (ceRNA)), affecting pro-
teins in cytoplasm and modulating RNA metabolism 
[80–84]. Due to these vital functional roles of lncRNAs 
in cells, lncRNAs regulate growth, invasion, and drug 
resistance of tumor [85–91]. Recent studies reveal 
that lncRNAs are master regulators of signaling net-
works in cancer [92–95]. The lncRNAs usually affect 
miRNAs in tumors, and by affecting miRNA expres-
sion, lncRNAs affect survival and migration of cancer 
cells [96–98]. Furthermore, lncRNAs with tumor-pro-
moting role such as CCAT2 can prevent apoptosis in 
cancer cells [99]. Importantly, lncRNAs can promote 
infiltration of immune cells such as B cells, T cells 
(both CD8+ and CD4+ T cells), neutrophils and den-
dritic cells in promoting anti-tumor immunity against 
cancer cells [100].

LncRNAs in regulation of major molecular pathways
MicroRNAs
miRNAs are considered as short endogenous ncR-
NAs that can enhance or decrease expression of target 
messenger RNA (mRNA) by binding to 5/-UTR and 
3/-UTR, respectively [101–103]. A miRNA can affect 
expression of different genes [104, 105]. Notewor-
thy, there are upstream mediators of miRNAs includ-
ing lncRNAs that can reduce miRNA expression via 
sponging [106, 107]. Increasing evidence reveals dys-
regulation of miRNA expression in prostate cancer 
and association with malignant behavior of tumor cells 
[108–112]. In this section, we examine lncRNA impact 
on miRNAs in prostate tumor and its association with 
malignant behavior of cancer cells. Importantly, most 
of the works have focused on tumor-promoting lncR-
NAs. However, there are some studies evaluating role 
of tumor-suppressor lncRNAs in regulating miRNA 
expression in prostate cancer.

Fig. 1  An overview of lncRNA function in affecting downstream targets. RNA polymerase II is involved in generation of lncRNAs and they 
participate in various functions in cells such as miRNA sponge, protein interaction and chromatin modification



Page 4 of 26Mirzaei et al. J Exp Clin Cancer Res          (2022) 41:214 

Tumor‑promoting lncRNAs
LncRNA CCAT1 is considered as tumor-promoting fac-
tor that its role in various cancers have been discussed. 
CCAT1 increases endometrial cancer proliferation, while 
it down-regulates expression level of estrogen receptor-
alpha (ERα) and its related molecular networks [113]. 
Increasing evidence demonstrates regulatory impact of 
lncRNA CCAT1 on miRNA expression in different can-
cers, so that CCAT1 can regulate miRNA-181a-5p and 
miRNA-138-5p in colorectal and pancreatic cancers, 
respectively for affecting progression [114, 115]. CCAT1 
promotes tumor proliferation and progression in prostate 
tumor. For this purpose, CCAT1 interacts with miRNA-
28-5p in cytoplasm (reduction in expression level) and 
paves the way for prostate cancer progression [116]. 
Noteworthy, lncRNAs can be affected by other upstream 
mediators in prostate cancer to mediate their regula-
tory impact on miRNAs. Such phenomenon occurs for 
lncRNA FOXP4-AS1 that prevents apoptosis in pros-
tate tumor cells and significantly increases growth and 
metastasis. Paired box 5 (PAX5) is capable of triggering 
FOXP4-AS1 expression that in turn, functions as ceRNA 
for miRNA-3184-5p, leading to post-transcriptional reg-
ulation of FOXP4 and increasing its expression in favor 
of prostate cancer progression [117]. The regulation of 
lncRNAs by upstream mediators and its association with 
miRNA expression led to emergence of complicated 
molecular pathways, requiring more examination in fur-
ther experiments.

LncRNA LINC00665 is a new emerging factor in can-
cer with crucial role in regulating various molecular 
pathways. Although there is evidence demonstrating 
that LINC00665 inhibits glioma progression via STAU1-
mediated mRNA degradation [118], another experiment 
highlights that fact that LINC00665 overexpression is 
responsible for reduced overall survival of prostate can-
cer patients [119]. Therefore, LINC00665 possesses a 
tumor-promoting role of prostate cancer and can be con-
sidered as a prognostic and diagnostic tool. The overex-
pression of staphylococcal nuclease and Tudor domain 
containing 1 (SND1) is in favor of prostate cancer pro-
gression, and miRNA-1224-5p down-regulates SND1 
expression in triggering cancer elimination. It has been 
reported that LINC00665 enhances tumor propaga-
tion, proliferation and metastasis via sponging miRNA-
1224-5p and subsequent upregulation of SND1 [120]. 
Therefore, miRNAs are well-known downstream targets 
of lncRNAs, and tumor-promoting lncRNAs can affect 
their expression via sponging in mediating prostate can-
cer progression [117, 121].

LncRNA SNHG4 is an oncogenic factor in differ-
ent cancers. LncRNA SNHG4 has multi-targeting abil-
ity and affects various mechanisms in promoting tumor 

malignancy. SNHG4 overexpression in gastric cancer 
leads to RRM2 upregulation via miRNA-204-5p down-
regulation to prevent cell cycle arrest and to enhance 
growth and metastasis of tumor cells [122]. LncRNA 
SNHG4 is involved in increasing metastasis of gastric 
tumor cells via EMT induction by sponging miRNA-
204-5p [123] and it also mediates immune evasion of 
cancer cells [124]. A same phenomenon occurs in pros-
tate cancer and SNHG4 undergoes upregulation by 
an upstream mediator known as SP1. Then, SNHG4 
promotes ZIC5 expression via miRNA-377 sponging 
to enhance survival of tumor cells and increase malig-
nant behavior [125]. In case of recognizing a tumor-
promoting lncRNA, the best strategy is its knock-down 
to diminish prostate cancer progression. For instance, 
silencing lncRNA TUG1 is beneficial in prostate cancer 
suppression and inducing radio-sensitivity via miRNA-
139-5p overexpression and subsequent overexpression of 
SMC1A [126].

The capability of prostate tumor cells in mediating 
chemoresistance should be overcome [127]. LncRNA 
and miRNA interaction determines drug resistance in 
prostate tumor. The overexpression of lncRNA NEAT1 
induces docetaxel resistance in prostate tumor. miRNA-
34a-5p and miRNA-204-5p undergo down-regulation in 
prostate cancer and increasing their expression elevates 
chemosensitivity via preventing ACSL4 expression. As 
an upstream mediator, lncRNA NEAT1 down-regulates 
expression level of both miRNA-34a-5p and miRNA-
204-5p to elevate ACSL4 expressions, leading to doc-
etaxel resistance of prostate tumor cells [128].

Tumor‑suppressor lncRNAs
LncRNA H19 is encoded by H19 gene located on chro-
mosome 11q15.5 [129]. Except skeletal muscle, H19 
demonstrates a decrease in expression in most of the tis-
sues [130, 131]. H19 overexpression is in favor of tumor 
progression by enhancing metastasis, triggering EMT 
and regulating molecular pathways such as miRNAs 
[121, 132, 133]. However, H19 is an anti-tumor factor in 
prostate cancer. There is a positive relationship between 
H19 and miRNA-675 in prostate cancer. By promot-
ing miRNA-675 expression, H19 reduces TGF-β lev-
els, leading to metastasis suppression of prostate cancer 
cells [134]. LncRNA MEG3 is another factor that its role 
in regulating miRNA expression in prostate cancer has 
been investigated. MEG3 has a similar role in other can-
cers such as ovarian cancer that can suppress progres-
sion and promote drug sensitivity [135, 136]. In prostate 
tumor cells and tissues, MEG3 expression undergoes 
down-regulation. Increasing MEG3 expression is associ-
ated with miRNA-9-5p down-regulation and subsequent 
increase in expression level of QKI-5, as downstream of 
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miRNA-9-5p. This axis significantly suppresses growth 
and invasion of prostate tumor cells and induces apop-
totic cell death [137].

ZEB1 mediates malignant behavior of prostate cancer 
cells. ZEB1 down-regulation is associated with a reduc-
tion in stemness of prostate tumor [138]. Furthermore, 
overexpression of ZEB1 promotes growth and metas-
tasis as well as induces drug resistance in prostate can-
cer [139]. LncRNA IUR appears to suppress metastasis 
of prostate cancer cells. For this purpose, lncRNA IUR 
decreases ZEB1 expression via miRNA-200 upregulation 
to impair prostate cancer progression [140]. Restoring 
expression level of tumor-suppressor lncRNAs stimulates 
apoptosis and interferes with proliferation of prostate 
cancer cells [141].

As more experiments are performed, more lncRNAs 
involved in prostate cancer progression/inhibition are 
identified. The interesting point is that lncRNA role is 
context-dependent and a certain lncRNA may possess 
various functions in different cancer types [142–144]. 
Hence, the exact role of each lncRNA in different can-
cers should be explored. LncRNA XIST is such factor 
that demonstrates tumor-promoting role in gastric and 
ovarian cancers via regulating miRNA expression [145, 
146], while it has tumor-suppressor role in prostate can-
cer. Enhancing XIST expression diminishes miRNA-23a 
expression via sponging to upregulate RKIP expression at 
post-transcriptional level, resulting in reduced prostate 
cancer growth and migration [147]. These experiments 
clearly highlight role of lncRNAs in regulating miRNA 
expression and affecting prostate cancer progression 
[148]. However, we are still a long way from understand-
ing the full potential of lncRNAs in prostate cancer pro-
gression/inhibition (Table 1 and Figure 2).

Wnt signaling
Another promising target in cancer suppression is Wnt/
β-catenin [161–163]. Briefly, Wnt signaling activation 
occurs by attachment of Wnt ligand to cell membrane 
receptors, known as Frizzled (Fz). Besides, Wnt ligands 
can bind to LRP families on cell membrane to induce 
Wnt signaling. Upon activation, β-catenin translocates 
into nucleus to stimulate downstream targets involved 
in cancer progression. However, in normal conditions, 
GSK-3β participates in degrading β-catenin and trans-
location to nucleus is inhibited [164, 165]. Activation of 
Wnt signaling can mediate growth, metastasis and ther-
apy resistance of prostate tumor [166–168]. LncRNAs 
have been shown to exert regulatory influence on Wnt 
signaling in prostate cancer. Wnt2B activation results 
in EMT induction in prostate cancer. miRNA-324-3p 
diminishes Wnt2B expression to inhibit EMT-mediated 

migration of prostate tumor. LncRNA SNHG7, owing 
to its tumor-promoting role, can reduce miRNA-
324-3p expression to elevate Wnt2B expression, result-
ing in EMT and progression of prostate cancer cells. 
Silencing SNHG7 significantly impairs progression 
of prostate tumor, highlighting role of this lncRNA in 
metastasis via Wnt signaling activation [169].

LncRNA noncoding RNA activated by DNA damage 
(NORAD) is another factor capable of regulating Wnt 
signaling and prostate cancer progression. Overall, 
NORAD is involved in development of different can-
cers such as lung cancer, ovarian cancer and osteosar-
coma [170–172]. It appears that NORAD is a critical 
regulator of miRNAs in different cancers [173]. In order 
to affect Wnt signaling in prostate cancer, NORAD tar-
gets miRNA-30a-5p. By binding to miRNA-30a-5p and 
acting as a ceRNA, NORAD upregulates expression 
level of RAB11A as a member of RAS oncogene family, 
resulting in Wnt/β-catenin activation and subsequent 
increase in metastasis of prostate cancer cells via EMT 
induction [174].

Androgen-independent prostate cancer (AIPC) is a 
complex condition in which prostate cancer cells do 
not depend on androgen for their progression and ADT 
is not effective [175]. It has been reported that genomic 
alterations and cellular events participate in develop-
ment of AIPC [176, 177]. Recent study has shown that 
lncRNAs can regulate Wnt signaling to affect progres-
sion of AIPC cells. LncRNA LEF1-AS1 shows overex-
pression in APIC cells and tissues that subsequently 
promotes proliferation and invasion. In this way, 
lncRNA LEF1-AS1 increases expression level of FZD2 
to activate Wnt signaling. Furthermore, LEF1-AS1 
induces GSK-3β phosphorylation at Serine 9 to prevent 
β-catenin degradation [178].

The role of lncRNA/Wnt axis in therapy response and 
progression of prostate cancer cells has been examined. 
The sensitivity of prostate tumor to cisplatin diminishes 
upon Wnt stimulation. miRNA-425-5p upregulation 
can increase cisplatin-mediated apoptosis via β-catenin 
down-regulation [179]. LncRNA HOTTIP is capable of 
promoting proliferation of prostate tumor and trigger-
ing cisplatin resistance. Knock-down of lncRNA HOT-
TIP inhibits Wnt pathway, resulting in cell death, cell 
cycle arrest and cisplatin sensitivity of prostate cancer 
cells [180]. Therefore, lncRNAs are potent regulators 
of Wnt signaling in prostate cancer and identification 
of their interaction is of importance in understanding 
mechanisms involved in prostate cancer progression/
inhibition. Furthermore, experiments have focused on 
tumor-promoting lncRNAs inducing Wnt signaling, 
and function of tumor-suppressor lncRNAs in Wnt 
modulation should be explored [181–185].
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STAT3 signaling
STAT3 protein has 770 amino acids with 6 functionally 
conserved domains mediating its biological roles [186–
188]. A variety of ligands have been identified for STAT3 
signaling including Janus kinase (JAK), tyrosine kinases 
and cytokines that can result in STAT3 phosphorylation 
at tyrosine 705 and serine 727, leading to nuclear trans-
location, DNA binding and affecting downstream targets 
[189–191]. Upregulation of STAT3 promotes metastasis 
of prostate tumor to bone [192]. STAT3 signaling acti-
vation elevates CRPC cell viability and metastasis [193]. 
Exposing CRPC cells to enzalutamide (Enz) elevates 
lncRNA-p21 expression that is required for neuroendo-
crine differentiation (NED). Enz induces AR signaling 

to promote lncRNA-p21 expression that in turn, upreg-
ulates expression level of EZH2 which is required for 
suppressing STAT3 signaling by lncRNA-p21. In this 
way, lncRNA-p21 changes EZH2 function from histone-
methyltransferase to non-histone methyltransferase to 
induce STAT3 methylation, leading to NED and CRPC 
suppression [194]. This study demonstrates that lncRNAs 
can indirectly affect STAT3 expression by targeting their 
upstream mediators. miRNAs are other upstream media-
tors of STAT3 in cancer [195, 196]. LINC00473 reduces 
expression level of miRNA-195-5p to enhance expression 
level of SEPT2 in prostate cancer. In turn, SEPT2 induces 
JAK/STAT3 signaling to dually increase growth and via-
bility of prostate tumor [197].

Table 1  LncRNAs regulating miRNAs in prostate cancer

LncRNA Signaling network Major impacts Refs

TUC338 MiRNA-466 Acting as tumor-promoting factor
TUC338 down-regulates miRNA-466 expression to increase progression of prostate cancer

[149]

IUR MiRNA-200/ZEB1 Increased expression of miRNA-200 by lncRNA IUR
Subsequent inhibition of ZEB1 in inhibiting cancer invasion

[140]

BRE-AS1 MiRNA-145-5p Acting as tumor-suppressor factor
BRE-AS1 enhances miRNA-145-5p expression to stimulate apoptosis in prostate cancer cells

[141]

TUG1 MiRNA-139-5p/SMC1A Reduced miRNA-139-5p expression by lncRNA TUG1
SMC1A upregulation
Triggering radio-resistance feature of prostate cancer

[126]

HOXA-AS2 MiRNA-509-3p/PBX3 Enhancing progression of prostate cancer
Reducing miRNA-509-3p expression via sponging to enhance PBX3 expression

[150]

PVT1 MiRNA-146a Reducing expression level of miRNA-146a by triggering methylation of CpG islands
Enhancing prostate cancer cell viability
Apoptosis inhibition

[151]

UCA1 MiRNA-331-3p/EIF4G1 Increased expression of UCA1 and EIF4G1 in prostate cancer
Reduced expression of miRNA-331-3p by UCA1 via sponging
Mediating radio-resistance

[152]

SNHG1 MiRNA-199a-3p/CDK7 Increasing growth and survival of prostate cancer cells
Triggering cell cycle progression
Reducing miRNA-199a-3p expression to upregulate CDK7

[153]

SNHG4 MiRNA-377/ZIC5 Overexpression of SNHG4 in prostate cancer by SP1
Reducing miRNA-377 expression by acting as ceRNA
Increasing ZIC5 expression to mediate proliferation and invasion

[125]

OGFRP1 MiRNA-124-3p/SARM1 Decreasing miRNA-124-3p expression by acting as ceRNA
SARM1 upregulation
Mediating malignant behavior of prostate tumor cells

[154]

KCNQ1OT1 MiRNA-211-5p/CHI3L1 Overexpression of lncRNA in prostate cancer cells and tissues
Decreasing miRNA-211-5p levels to increase CHI3L1 levels
Increasing growth and migration

[155]

MALAT1 MiRNA-320b/AR Reduction in miRNA-320b expression by MALAT1 to induce AR signaling
Increasing cell cycle progression

[156]

FAM83H-AS1 MiRNA-15a/CCNE2 Sponging miRNA-15a to increase CCNE2 expression
Promoting growth and cell cycle progression of prostate tumor

[157]

ANRIL Let-7a/TGF-β1/Smad Reducing expression level of Let-7a to induce TGF-β signaling
Increasing metastasis and invasion

[158]

TTTY15 MiRNA-29a-3p/DVL3 Positive association with tumor progression
Increasing DVL3 expression via miRNA-29a-3p down-regulation

[159]

BLACAT1 MiRNA-29a-3p/DVL3 The miRNA-29a-3p expression inhibition by BLACAT1 and subsequent increase in DVL3 levels
Mediating prostate tumor progression

[160]
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PTEN/PI3K/Akt/mTOR signaling
PTEN is a tumor-suppressor located on chromosome 10 
with mutation in various cancers [198–200]. Owing to its 
lipid-phosphatase activity, PTEN diminishes cellular lev-
els of phosphatidylinositol-3,4,5-phosphate (PIP3) that is 
considered as a seconder messenger in different biologi-
cal and molecular mechanisms [201]. By reducing PIP3 
levels, PTEN inhibits PI3K signaling and its downstream 
axis Akt/mTOR that is responsible for cancer progres-
sion [196, 202]. Increasing evidence has confirmed role 
of PTEN signaling in prostate cancer. Polymorphisms in 
PTEN gene is responsible for extracapsular extension in 
prostate cancer [203]. In CRPC cells, the phosphoryla-
tion of PTEN by LIMK2 results in its degradation, paving 
the way for cancer progression [204]. Besides, activation 
of PI3K/Akt axis prevents ferroptosis in prostate tumor 
[205], and mediates therapy resistance [206]. LncRNAs 
are potent modulators of PTEN and PI3K/Akt in prostate 
tumor. Noteworthy, for promoting progression of pros-
tate cancer, lncRNAs should be capable of decreasing 
PTEN expression. LncRNA MCM3AP-AS1 has overex-
pression in prostate tumor and its knockdown prevents 

tumor progression. Mechanistically, MCM3AP-AS1 
down-regulates miRNA-543-3p to inhibit PTEN, result-
ing in Akt signaling activation and further promotion 
in progression of prostate cancer cells [207]. Decreas-
ing expression level of tumor-promoting lncRNAs such 
as PlncRNA-1 enhances PTEN expression to suppress 
Akt signaling and prostate cancer progression [208]. By 
inducing PI3K/Akt/mTOR axis, lncRNA LINC01296 
enhances proliferation and survival. This axis can be 
considered as a biomarker in prostate cancer, in which 
its activation provides poor prognosis in prostate cancer 
[209].

Similar to other molecular pathways discussed before, 
activation of PI3K/Akt signaling is responsible for drug 
resistance trait of prostate cancer [210]. Overexpression 
of lncRNA PCAT6 occurs in prostate cancer cells resist-
ant to 5-flourouracil (5-FU). In this way, PCAT6 down-
regulates miRNA-204 expression to induce HMGA2/
PI3K axis, resulting in drug resistance [211]. As miRNAs 
play a remarkable role in PI3K/Akt regulation in can-
cer [212], their regulation by lncRNAs occurs in pros-
tate cancer. It has been reported that lncRNA HCG11 

Fig. 2  The lncRNAs regulating miRNAs in prostate cancer. LncRNAs reduce the expression level of target miRNAs via sponging. The tumor 
progression including proliferation and invasion, as well as drug resistance are modulated by lncRNA/miRNA axis in prostate cancer. Regulating 
expression level of lncRNAs or miRNAs is beneficial in impairing progression of prostate cancer cells
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overexpression significantly stimulates apoptosis and 
simultaneously, inhibits prostate tumor progression. 
HCG11 is capable of miRNA-543 down-regulation to 
inhibit PI3K/Akt signaling in impairing prostate cancer 
growth [213]. The impact of lncRNA/PI3K/Akt axis on 
prostate cancer progression is attributed to downstream 
targets of this signaling network. The expression level 
of lncRNA DANCR enhances in prostate cancer and 
induces EMT-mediated metastasis. By reducing expres-
sion level of miRNA-185-5p, DANCR increases LIM and 
SH3 protein 1 (LASP1), resulting in FAK/PI3K/Akt axis 
induction. Then, Akt phosphorylates GSK-3β to stimulate 
Snail expression in promoting prostate tumor progres-
sion [214]. Overall, modulation of PI3K/Akt signaling by 
lncRNAs occurs in prostate cancer [215], and therapeutic 
targeting of lncRNAs, using pharmacological or genetic 
interventions, can result in cancer inhibition.

Notch signaling
Notch signaling is a new emerging target in prostate can-
cer due to its tumor-promoting function. Notch1 can 
promote expression levels of MMP-2 and MMP-9 in 
increasing progression and metastasis of prostate can-
cer cells. As anti-cancer agent, rubimaillin suppresses 
Notch signaling to down-regulate MMP-2 and MMP-9 
expressions in inhibiting growth and invasion of prostate 
cancer cells [216]. Aspartate β-hydroxylase is involved 
in castration-resistant prostate cancer via activation 
of Notch signaling [217]. Overexpression of Notch1 is 
linked to EMT stimulation in enhancing metastasis of 
prostate tumor cells [218]. Furthermore, Notch signal-
ing stimulates drug resistance in prostate cancer and its 
inhibition is of importance in reversing chemoresistance 
[219]. Studies have demonstrated interaction between 
lncRNAs and Notch signaling in regulating prostate can-
cer progression. HIF-1α functions as upstream media-
tor to stimulate Notch1 signaling in prostate cancer. 
LncRNA GHET1 reduces KLF2 expression to trigger 
HIF-1α/Notch1 signaling in increasing prostate cancer 
progression. Notably, silencing GHET1 promotes KLF2 
expression, leading to HIF-1α/Notch1 inhibition and 
subsequent decrease in prostate cancer progression 
[220]. Future studies will shed more light on the interac-
tion between lncRNAs and Notch signaling in prostate 
cancer.

NF‑κB signaling
NF-κB contains five subunits such as NF-κB1, NF-κB2, 
c-Rel, RelA and RelB [221, 222]. It has two main path-
ways including classical pathway for which RelA and cRel 
play critical role, and alternative pathway that applies to 
RelB containing dimers [223, 224]. Due to tumor-pro-
moting role of NF-κB signaling in cancer, its synthetic 

and natural inhibitors have been developed [225, 226]. 
ncRNAs are considered as potent regulators of NF-κB 
signaling in cancer [227]. The increasing evidence dem-
onstrates that NF-κB signaling activation can signifi-
cantly promote progression of prostate cancer cells and 
induces their resistance to therapy [193, 228, 229]. In 
this section, we provide a discussion of lncRNAs role in 
NF-κB regulation in prostate cancer.

The activation of NF-κB signaling is mediated via 
cytokines such as tumor necrosis factor-a (TNF-α) and 
interleukin-1 (IL-1), among others [230, 231]. These fac-
tors stimulate IκB kinase complex (IKK), consisting of 
the catalytic IKKα and IKKβ subunits [232, 233]. IKK 
complex induces proteasomal degradation of IκBα pro-
tein via phosphorylation to release NF-κB, resulting in 
its nuclear translocation and activation of downstream 
targets [234–236]. As a tumor-suppressor factor, lncRNA 
DRAIC inhibits capacity of IKK complex in phosphoryl-
ating IκBα, resulting in NF-κB signaling inhibition and 
decreased progression of prostate cancer cells [237]. On 
the other hand, there are lncRNAs capable of inducing 
NF-κB signaling. It has been reported that lncRNA car-
diac hypertrophy-related factor (CHRF) can upregulate 
miRNA-10b expression to induce NF-κB signaling and 
promote progression of prostate cancer cells. Silencing 
lncRNA CHRF significantly inhibits metastasis (EMT) 
and proliferation [238]. For activation of NF-κB signal-
ing in prostate cancer, a complex containing different 
factors should be formed or disrupted. PH and leucine-
rich repeat protein phosphatase (PHLPP) can interact 
with FKBP51 in regulating IKKα level. LncRNA PCAT1 
induces NF-κB signaling to enhance CRPC progres-
sion via dissecting PHLPP from FKBP51/IKKα complex 
[239]. To date, a few experiments have explored role of 
lncRNAs in regulating NF-κB signaling in prostate can-
cer. However, these studies are in agreement with the 
fact that NF-κB and its components such as IKKα are 
regulated by lncRNAs and this axis affects both metas-
tasis and growth of prostate cancer cells. Future studies 
can focus on the role of lncRNA/NF-κB axis in therapy 
response of prostate cancer. Figure 3 provides a summary 
of molecular pathways regulated by lncRNAs in prostate 
cancer therapy.

LncRNAs and molecular mechanisms
Role in proliferation
Cancer cells demonstrate rapid proliferation that 
requires high amount of energy provided by glucose 
uptake and consumption [240]. One of the distinct dif-
ferences between normal and cancer cells is their way of 
energy production, in that cancer cells depends on glu-
cose metabolism instead of oxidative phosphorylation in 
mitochondria [241]. Therefore, suppressing glycolysis or 
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Warburg effect is a promising strategy in cancer therapy 
[242]. Glucose transporter-1 (GLUT-1) mediates translo-
cation of glucose across cell membrane and its upregu-
lation is associated with enhanced cancer progression, 
particularly prostate cancer [101, 243]. The glucose 
metabolism is affected by lncRNAs in prostate cancer. 
LncRNA SNHG16 possesses a tumor-promoting role 
that its overexpression stimulates glucose uptake and 
metabolism, leading to increased prostate cancer prolif-
eration. Knock-down of SNHG16 significantly reduces 
GLUT-1 expression and prevents prostate cancer prolif-
eration [244].

LncRNAs can regulate apoptosis in prostate cancer. 
Toll-like receptor (TLR) is an apoptosis-related pathway 
that its induction occurs in tumor microenvironment 
[245]. The activation of TLR signaling pathway occurs 
in prostate cancer to promote its progression [246]. 
LncRNA PART1 is capable of inducing TLR signaling 
and its downstream targets including TLR3, TNFSF10 
and CXCL13 in apoptosis inhibition in prostate cancer. 
Silencing PART1 is associated with a decrease in prostate 
cancer proliferation and apoptosis induction [247]. Both 

in vitro and in vivo experiments have shown that over-
expression of tumor-promoting lncRNAs can enhance 
prostate cancer proliferation and prevents apoptosis. By 
reducing miRNA-15a-5p expression, lncRNA PVT1 pro-
motes KIF23 expression to prevent apoptosis in prostate 
cancer. Knock-down of PVT1 is correlated with apopto-
sis induction [248]. Overall, experiments have evaluated 
role of lncRNAs in regulating prostate cancer prolifera-
tion via affecting molecular pathways [249–251] that the 
major ones discussed in previous sections.

Role in metastasis
A high number of prostate cancer-related mortal-
ity arises from metastasis that is due to dissemination 
of cancer cells to distant organs including lung, liver, 
bone, and lymph nodes [252]. Bone metastasis is the 
most common complication of prostate cancer which 
subsequently, is associated with osteoblastic and osteo-
lytic lesions [253]. Therefore, it is vital to identify fac-
tors involved in prostate cancer metastasis for the 
management of this malignant condition. Furthermore, 
the molecular pathways related to prostate cancer 

Fig. 3  LncRNAs in regulation of other molecular pathways in prostate cancer. PTEN, STAT3, mTOR and EZH2 are main molecular pathways involved 
in regulating prostate cancer progression. LncRNAs can directly interact with aforementioned factors or target miRNAs in affecting their expression 
level
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metastasis can be considered as biomarkers for pros-
tate cancer prognosis [254, 255]. One of the molecular 
pathways involved in regulating prostate cancer metas-
tasis is NDRG1 gene that its down-regulation results 
in increased migration [256]. As a tumor-suppressor 
factor, lncRNA LINC00844 undergoes down-regula-
tion in metastatic prostate cancer cells and is associ-
ated with poor prognosis. Mechanistically, LINC00844 
mediates AR binding to chromatin and its expression 
is vital for promoting NDRG1 gene expression in sup-
pressing prostate cancer migration and invasion [257]. 
Increasing evidence has revealed role of transforming 
growth factor-beta (TGF-β) in mediating bone metas-
tasis of prostate cancer cells via EMT induction [258, 
259]. LncRNA prostate cancer-associated transcript 7 
(PCAT7) is also called PCAN-R2 and located on chro-
mosome 9q22.32. LncRNA PCAT7 is suggested to be 
involved in cancer progression [260, 261]. In prostate 
cancer, upregulation of PCAT7 enhances bone metas-
tasis and aggressive behavior of prostate cancer cells via 
EMT induction. In this way, PCAT7 reduces miRNA-
324-5p expression via sponging to enhance TGFBR1 
expression, resulting in TGF-β/Smad axis stimulation. 
Furthermore, TGF-β signaling can form a positive 
feedback loop with PCAT7 to enhance its expression, 
resulting in EMT induction and bone metastasis of 
prostate cancer cells [262].

Another factor responsible for bone metastasis of pros-
tate cancer is C-X-C chemokine receptor type 4 (CXCR-
4) [263, 264]. The overexpression of CXCR4 occurs in 
different cancers and mediates their aggressive behavior 
[265–268]. In prostate cancer, CXCR4 upregulation is 
associated with poor prognosis and induces lymph node 
and bone metastasis [269]. LncRNA UCA1 can regulate 
CXCR4 expression in prostate cancer cells to affect their 
progression. By sponging miRNA-204, lncRNA UCA1 
promotes expression level of CXCR4 to enhance metas-
tasis of prostate cancer cells [270]. As it was mentioned, 
EMT induction is responsible for increased prostate can-
cer migration and invasion. EMT includes both morpho-
logical and cellular alterations [271]. At morphological 
level, epithelial cells that have low mobility, are trans-
formed to mesenchymal cells with high migratory ability. 
At cellular level, a decrease occurs in E-cadherin level, 
while levels of N-cadherin and vimentin increase [55, 
272]. In prostate cancer, STAT5A activates both lncRNA 
SNHG17 and SNORA71B to induce EMT and promote 
metastasis [273]. The same function is mediated by 
SNHG15 in prostate cancer that its overexpression sig-
nificantly increases prostate cancer metastasis via EMT 
induction. Mechanistically, SNHG15 down-regulates 
miRNA-338-3p by acting as ceRNA to upregulate KBP 
prolyl isomerase 1A (FKBP1A), leading to EMT-mediated 
metastasis of prostate cancer [274]. Overall, lncRNAs are 

Fig. 4  Role of lncRNAs in proliferation and metastasis of prostate cancer cells. EMT is responsible for increasing migration and invasion of prostate 
cancer cells. LncRNA SNH17 and PCAT7 are among the lncRNAs inducing EMT in increasing prostate cancer metastasis. Apoptosis induction and 
transfer of glucose into prostate cancer cells (GLUT1) are also modulated by lncRNAs
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critical modulators of prostate cancer metastasis and 
more studies are needed to highlight other lncRNAs 
involved in promoting migration and invasion [275, 276]. 
Figure 4 highlights role of lncRNAs in regulating prolif-
eration and migration of prostate cancer cells.

Role in therapy response
Although ADT is applied in prostate cancer therapy, it 
seems that these malignant cells can promote their pro-
gression via androgen-independent manner. Other kinds 
of therapies such as chemotherapy regimen with doc-
etaxel and cabazitaxel and antiandrogens such as abira-
terone and Enz are utilized in prostate cancer therapy 
[277–282]. However, it has been shown that prostate 
cancer cells can trigger chemoresistance [283, 284]. In 
respect to role of lncRNAs in regulating various molecu-
lar pathways in prostate cancer, these ncRNAs can affect 
drug resistance feature. Furthermore, prostate cancer 
cells can obtain resistance to radiotherapy [285]. The aim 
of this section is to examine role of lncRNAs in regulat-
ing therapy response of prostate cancer cells.

HOXD-AS1 is encoded by HOXD cluster gene and a 
recent experiment has evaluated its role in cancers. Over-
expression of HOXD-AS1 enhances cyclin D1 expression 
via miRNA-526b-3p down-regulation, resulting in prolif-
eration and metastasis of colorectal cancer cells [286]. By 
acting as ceRNA, lncRNA HOXD-AS1 promotes expres-
sion level of fibroblast growth factor 2 (FGF2) in mediat-
ing cervical cancer progression [287]. On the other hand, 
WD repeat domain 5 (WDR5) interacts with lncRNAs in 
maintaining chromatin activation [288]. In CRPC, silenc-
ing HOXD-AS1 impairs proliferation and increases sen-
sitivity to chemotherapy. HOXD-AS1 recruits WDR5 
to trigger histone H3 lysine 4 tri-methylation of target 
genes such as PLK1, AURKA, CDC25C, FOXM1 and 
UBE2C, leading to chemoresistance induction in pros-
tate cancer [289]. Doxorubicin (DOX) is a well-known 
chemotherapeutic agent applied in cancer therapy. DOX 
administration stimulates apoptosis and cell cycle arrest 
via inhibiting topoisomerase activity [272, 290]. Pros-
tate cancer cells have demonstrated DOX resistance by 
affecting various molecular pathways. p53 down-regula-
tion and retinoic acid-related orphan nuclear receptor γ 
(RORγ) upregulation are among the factors involved in 
DOX resistance in prostate cancer [291, 292]. LncRNA 
LOXL1-AS1 is capable of promoting epidermal growth 
factor receptor (EGFR) in prostate cancer via miRNA-
3et-7a-5p down-regulation to mediate DOX resistance. 
Silencing LOXL1-AS1 impairs proliferation and sensi-
tizes prostate cancer cells to DOX-mediated apoptosis 
[293].

Paclitaxel (PTX) is another chemotherapy regimen 
used in cancer therapy including that of prostate. In 

respect to PTX resistance of prostate cancer cells, poly-
meric nanoparticles have been applied for targeted 
delivery of PTX [294]. Furthermore, activation of molec-
ular mechanisms such as EMT stimulates PTX resistance 
[295]. LncRNA CCAT1 undergoes overexpression in 
PTX resistant-prostate cancer cells and prevents apop-
tosis. In this way, CCAT1 reduces miRNA-24-3p expres-
sion to upregulate fascin1 (FSCN1) expression, leading 
to prostate cancer proliferation, survival and PTX resist-
ance [296]. Overall, drug resistance is a common feature 
of prostate cancer cells that is attributed to their aggres-
sive behavior. Identification of lncRNAs and their down-
stream targets can pave the way to effective prostate 
cancer chemotherapy [297].

Radio-resistance is another problematic issue in pros-
tate cancer therapy [298]. One of the molecular mecha-
nisms involved in radio-resistance is autophagy. Briefly, 
autophagy is responsible for providing energy during 
starvation via degradation of amino acids and macro-
molecules. Furthermore, autophagy degrades aged orga-
nelles in cells. AMP-activated protein kinase (AMPK) 
and Beclin-1 are considered as inducers of autophagy, 
while mTOR signaling suppresses autophagy [299]. 
Recently, attention has been directed towards role of 
autophagy in cancer progression. Autophagy plays like a 
double-edged sword in cancer and can increase cancer 
malignancy [103]. Recently published experiments dem-
onstrated that autophagy activation by upstream media-
tors such as Wnt, miRNA-129-5p and AMPK can result 
in radio-resistance [300–302]. On the other hand, there 
are studies showing that autophagy activation promotes 
radio-sensitivity [303, 304]. Therefore, more experiments 
are required to reveal exact role of autophagy in caner. 
LncRNA highly upregulated in liver cancer (HULC) has 
shown a tumor-promoting role in prostate cancer. The 
overexpression of HULC induces radio-resistance in 
prostate cancer and its silencing is correlated with cell 
cycle arrest at G0/G1 phase. HULC can inhibit autophagy 
via Beclin-1 down-regulation and triggering mTOR sign-
aling. The autophagy inhibition by HULC sensitizes pros-
tate cancer cells to irradiation by apoptosis induction 
through enhancing caspase-3 and Bax levels [305].

Role in immune regulation
Cancer cells are able to regulate various intrinsic and 
extrinsic biological pathways to ensure their adaptation 
to host defense. These adaptations include stimulation 
of tumor-promoting mechanisms, preventing cell death, 
angiogenesis induction, promoting migration and finally, 
triggering immune evasion [306]. Generally, natural killer 
(NK) and cytotoxic T cells (CTLs) are involved in anti-
tumor immunity via apoptosis induction and mediat-
ing cell lysis [307]. However, cancer cells have obtained 
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resistance to immune surveillance, and they are no longer 
responsive to immune system-mediated lysis. They 
can form an immunosuppressive microenvironment to 
escape anti-tumor immunity [308]. Immune evasion 
commonly occurs in prostate cancer, threatening effi-
cacy of immunotherapy. In CRPC, Dickkopf-1 (DKK1) 
induces Wnt signaling, resulting in immune evasion 
[309]. It is worth mentioning that EMT induction and 
increased N-cadherin levels can reduce levels of cytotoxic 
T cells (CD8+), while they promote level of immunosup-
pressive regulatory T cells (CD4+/FOXP3+), triggering 
immune evasion of prostate cancer [310]. In this section, 
the regulatory impact of lncRNAs on immune system in 
prostate cancer is discussed.

One of the most well-known molecular pathways 
involved in immune evasion is programmed death-1 (PD-
1) and its ligand, PD-L1. The tumor-suppressor factors 
are capable of regulating PD-L1 expression in prostate 
cancer. Retinoblastoma protein RB decreases expres-
sion level of PD-L1 to promote anti-tumor immunity and 
potential of radiotherapy in prostate cancer treatment 
[311]. The cyclin D-CDK4 can induce proteasomal deg-
radation of PD-L1 in preventing immune evasion of pros-
tate cancer [312]. Noteworthy, lncRNAs are considered 
as potent modulators of PD-L1 in cancer [313]. A recent 
experiment has shown that lncRNA KCNQ1QT1 induces 
escape of prostate cancer cells from immune surveil-
lance. Normally, miRNA-15a binds to 3/-UTR of PD-L1 
to reduce its expression, preventing apoptosis in CD8+ 
T cells and increasing their proliferation. Furthermore, 
miRNA-15a/PD-L1 axis enhances apoptosis induction 
in prostate cancer cells and impairs their proliferation 
and migration. It has been reported that lncRNA KCN-
Q1QT1 down-regulates miRNA-15a expression via 
sponging to induce PD-L1 signaling, increasing immune 
evasion of prostate cancer [314].

The signaling networks involved in regulating PD-L1 
expression in prostate cancer is of importance for 
developing novel therapeutics in near future. LIF is a 
pleiotropic cytokine with physiological functions in 
embryonic development [315]. Increasing evidence dem-
onstrates tumor-promoting role of LIF in cancer and its 
potential in mediating therapy resistance and increasing 
self-renewal capacity of cancer-initiating cells [316, 317]. 
LIF can function as upstream mediator of JAK1/STAT3 
signaling in preventing differentiation of cancer cells 
[318]. A recent experiment has shown how lncRNAs can 
regulate LIF/STAT3 axis in affecting immune response of 
prostate cancer cells. Upregulation of lncRNA lncAMPC 
enhances metastasis and immune evasion. The process 
is started from cytoplasm, where lncAMPC reduces 
expression level of miRNA-637 via sponging to enhance 
LIF expression. lncAMPC then translocates into nucleus 

to promote LIFR expression via decoying histone H1.2. 
The activation of LIF/LIFR axis stimulates JAK1/STAT3 
signaling to preserve PD-L1 expression, leading to 
immune evasion of prostate cancer [319]. PD-1 inhibi-
tors are of interest in cancer immunotherapy. However, 
upregulation of LIF can prevent infiltration of CD8+ T 
cells, impairing efficacy of anti-PD-1 therapy [320]. It 
appears that lncRNAs can affect infiltration of immune 
cells. LncRNA SNHG9 is considered as a tumor-promot-
ing factor in prostate cancer that diminishes infiltration 
of T central memory (Tcm) cells and T helper cells, while 
it promotes infiltration of plasmacytoid dendritic cells 
(pDCs) and NK CD56 bright cells. Furthermore, over-
expression of SNHG9 mediates poor prognosis of pros-
tate cancer patients, showing its role in immune evasion 
[321]. Figure 5 demonstrates how lncRNAs participate in 
regulating therapy response and immune system in pros-
tate cancer with an emphasis on molecular pathways.

Exosomal lncRNAs
Recently, special attention has been directed towards 
extracellular vesicles (EVs) obtained from cancer and 
non-cancer cells [322, 323]. Overall, there are three main 
categories of EVs including exosomes, microvesicles and 
apoptotic bodies with functional roles in physiologi-
cal and pathological conditions [324–326]. As nano-
extracellular vesicles, exosomes are present in TME and 
various body fluids such as blood, saliva, pancreatic duct 
fluid, and amniotic fluid can participate in their transpor-
tation to distant tissues and organs [327]. Furthermore, 
they also function via autocrine and paracrine fluids 
[328]. Exosomes provide the communication among vari-
ous cells and they contain various macromolecules such 
as proteins, lipids and most importantly, nucleic acids 
[329]. The exosomes originate from endosomal process-
ing [330] and it has been reported that they contain ncR-
NAs, especially lncRNAs . Therefore, it is vital to reveal 
role of exosomal lncRNAs in cancer and in this section, 
we provide a description of exosome-mediated lncRNA 
delivery in prostate cancer and its association with malig-
nant behavior [331].

It is worth mentioning that exosomal lncRNAs can be 
utilized for distinguishing prostate cancer and BPH. A 
clinical study collected urine samples from 30 prostate 
cancer patients and 49 BPH patients to examine potential 
of lncRNAs GAS5 and lincRNA-p21 in prostate cancer 
diagnosis. The expression level of exosomal GAS5 dem-
onstrates no difference among prostate cancer and BPH. 
However, exosomal lincRNA-p21 lncRNA was different 
among patients with prostate cancer and BPH with more 
expression level in prostate cancer [332]. Another experi-
ment investigated expression level of two exosomal lncR-
NAs including SAP30L-AS1 and SChLAP1 in prostate 
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cancer and BPH. The results reveal high expression of 
exosomal lncRNA SAP30L-AS1 in BPH, while SChLAP1 
shows more expression in prostate cancer compared 
to BPH [333]. Therefore, by developing novel imaging 
methods for tracing exosomes such as Antares2-medi-
ated bioluminescence resonance energy transfer (BRET), 
a revolution can be made in cancer diagnosis [334].

LncRNAs are potent modulators of different molecular 
pathways in prostate cancer and microRNAs (miRNAs) 
are among the most common downstream targets of 
lncRNAs [335]. An interesting experiment has revealed 
that certain lncRNAs are enriched in prostate can-
cer exosomes and lncRNAs regulating miRNA expres-
sion are among them. Exosomal lncRNAs ELAVL1 
and RBMX are enriched in prostate cancer due to their 
capacity in regulating expression level of miRNAs such 
as miRNA-17, miRNA-18a, miRNA-20a, miRNA-93 
and miRNA-106b [336]. In fact, exosomes accelerate 
transfer of lncRNAs into extracellular milieu and based 
on the role of lncRNA as tumor-suppressor or tumor-
promoting factor, it affects proliferation and invasion of 
prostate cancer cells [337]. Although a few studies have 
evaluated role of exosomal lncRNAs in prostate cancer, it 

appears that these kinds of lncRNAs can be considered as 
novel diagnostic and prognostic factors in prostate can-
cer and their expression level is of importance for distin-
guishing among BPH and prostate cancer. Furthermore, 
more diagnostic tools should be developed for detecting 
exosomes in prostate cancer. Table 2

Therapeutic targeting of lncRNAs
As lncRNAs are considered as critical regulators of 
molecular pathways and mechanisms in prostate cancer, 
it is of importance to regulate their expression level to 
affect progression of prostate cancer cells. As it was dis-
cussed, most of the experiments have focused on reveal-
ing role of tumor-promoting lncRNAs in prostate cancer. 
Therefore, decreasing expression of such lncRNAs can 
pave the way to effective treatment of prostate cancer. In 
this section, our aim is to show currently applied thera-
peutic strategies in regulating expression levels of lncR-
NAs in prostate cancer.

Genetic intervention
RNA interference (RNAi) was first discovered in 1998 
and it is a biological mechanism occurring in most 

Fig. 5  The lncRNAs regulate therapy response and immune system interactions in prostate cancer. The overexpression of tumor-promoting 
lncRNAs lead to drug resistance. Furthermore, overexpression of PD-L1 by lncRNAs can lead to immune escape in prostate cancer
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eukaryotic cells, when double-stranded RNA (dsRNA) 
induces biochemical events. RNAi leads to sequence-
specific inhibition of target gene expression [354]. The 
first clinical application of RNAi was in 2004, when a 
naked siRNA, called Bevasiranib was utilized for topi-
cal intravitreal injection for treatment of age-related dis-
eases [355]. siRNA and short-hairpin RNA (shRNA) are 
among the most common genetic tools applied in dis-
ease therapy. shRNA is a potent genetic tool applied in 
basic research and genome engineering, while siRNA has 

opened its way in clinical course [356]. siRNA is consid-
ered as a synthetic short non-coding RNA that is inac-
tive in cells until it is loaded into Argonaute (Ago2) via 
RNA-binding protein (TRBP). Then, passenger or sense 
stranded is eliminated, while guide or antisense stranded 
remains attached to catalytic Ago2. At the next step, 
guide strand of siRNA binds to seed region of messen-
ger RNA (mRNA) and then, Ago2 cleaves it, resulting 
in expression suppression [357–360]. However, siRNA 
has a variety of impediments before targeting genes and 

Table 2  An overview of lncRNAs involved in prostate cancer progression/inhibition

LncRNA Signaling network Remarks Refs

UNC5B-AS1 Caspase-9 Enhanced expression of UNC5B in prostate cancer cells and tissues
Negative association between UNC5B-AS1 and caspase-9 and presence of negative feedback loop
Preventing apoptosis

[338]

GASL1 GLUT1 Significant difference in GASL1 expression in normal and prostate cancer tissues
Reducing GLUT1 expression and increasing Bcl-2 expression
Overexpression of GASL1 suppresses tumor growth and invasion

[339]

GAS5 - Exposing prostate cancer cells to dexamethasone enhances expression level of GAS5 to suppress prolifera‑
tion and stimulate cell cycle arrest

[340]

EMX2OS cGMP/PKG Low expression of EMX2OS in prostate cancer, revealing its tumor-suppressor role
Overexpression of EMX2OS and TCF12 jointly induces cGMP/PKG pathway to inhibit growth and viability of 
cancer cells

[341]

UCA1 MDM2/E-cadherin Preventing the interaction between MDM2 and E-cadherin
Increasing stability of E-cadherin
Preventing aggressive behavior of prostate cancer cells

[342]

TMPO-AS1 - This lncRNA can be considered as a prognostic and diagnostic tool in prostate cancer
Overexpression of TMPO-AS1 is associated with undesirable prognosis
Apoptosis inhibition

[343]

NCK1-AS1 - Overexpression of NCK1-AS1 in prostate cancer and can be utilized for distinguishing with BPH patients [344]

NR2F2-AS1 CDK4 Acting as tumor-promoting factor
Increasing expression level of CDK4
Mediating cell cycle progression

[345]

GAS5 - Association of GAS5 with translational elongation, protein biosynthesis and transcription
Apoptosis inhibition
Increasing proliferation and cell cycle progression

[346]

SOCS2-AS1 TNFSF10 Upregulation of SOCS2-AS1 in prostate cancer
Down-regulation of TNFSF10 by lncRNA
Apoptosis inhibition

[347]

HOTAIR - HOTAIR can drive neuroendocrine differentiation of prostate cancer [348]

POTEF-AS1 - Increasing growth and cell cycle progression
Inhibiting apoptosis via down-regulating TLR pathway
Mediating docetaxel resistance via suppressing apoptosis

[349]

MIR4435-2HG FAK/Akt/β-catenin Overexpression of MIR4435-2HG in prostate cancer cells and tissues
Silencing this lncRNA prevents proliferation and invasion
MIR4435-2HG cooperates with ST8SIA1 to induce FAK/Akt/β-catenin signaling, leading to prostate cancer 
progression

[350]

SNHG1 hnRNPL/EMT Interaction of SNHG1 with hnRNPL to induce EMT in prostate cancer via E-cadherin down-regulation and 
vimentin upregulation
Increasing migration and metastasis of cancer cells

[351]

ARLNC1 AR Upregulation of ARLNC1 by AR
ARLNC1 can also promote AR stabilization via RNA-RNA interaction
Increasing prostate cancer progression

[352]

LBCS hnRNPK/AR Interaction of LBCS with hnRNPK to suppress AR translation
Low expression of LBCS is associated with poor prognosis
Preventing castration resistance in prostate cancer

[353]
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reducing their expression level. It has been reported 
that siRNA can be degraded by endogenous ribonucle-
ase enzymes in plasma, and it can undergo clearance by 
kidney filtration. Furthermore, siRNA should effectively 
penetrate into cancer cells and escape endosome-medi-
ated degradation [361]. In order to overcome such chal-
lenges, nanocarriers have been developed for targeted 
delivery of siRNA into cancer cells, protecting against 
RNase degradation, and mediating endosomal escape 
[52, 362–364]. Noteworthy, siRNA can be applied for 
downregulating lncRNA expression in cancer therapy, 
and subsequent inhibition of proliferation and migration 
of cancer cells [365, 366].

The newly conducted experiments have exploited 
siRNA in affecting lncRNA expression in prostate can-
cer therapy. The expression level of lncRNA MNX1-AS1 
undergoes upregulation in prostate cancer cells and tis-
sues to mediate their growth and metastasis. Silencing 
lncRNA MNX1-AS1 by siRNA is correlated with sup-
pressing prostate cancer migration via reducing N-cad-
herin and vimentin levels and increasing E-cadherin 
levels [367]. Besides, potential of prostate cancer cells 
in colony formation and proliferation can be suppressed 
using siRNA for lncRNA down-regulation [368]. Using 
siRNA for targeting lncRNAs can affect downstream 
molecular pathways involved in prostate cancer pro-
gression. LncRNA plasmacytoma variant translocation 
1 (PVT1) is a tumor-promoting factor located on chro-
mosome 8q24 adjacent to MYC [369]. In prostate cancer, 
lncRNA PVT1 induces phosphorylation of p38 to pro-
mote both proliferation and invasion. Silencing PVT1 
using siRNA is associated with a significant decrease in 
survival and invasion of prostate cancer cells via prevent-
ing p38 phosphorylation [370]. It is worth mentioning 
that siRNA is beneficial in revealing role of lncRNAs in 
prostate cancer. For instance, lncRNA GAS5 is a tumor-
suppressor factor in prostate cancer and its overex-
pression decreases miRNA-103 to inhibit Akt/mTOR 
signaling, leading to a significant decrease in proliferation 
and metastasis. In this case, siRNA application dimin-
ishes GAS5 expression in increasing prostate cancer pro-
gression, revealing anti-tumor activity of GAS5 [371].

The potential involvement of lncRNAs in drug resist-
ance feature of prostate cancer cells has made them 
as ideal candidates for therapeutic targeting. Recently, 
we have shown that lncRNA HORAS5 overexpression 
triggers resistance of CRPC cells to taxane chemother-
apy. This is mediated via upregulation of BCL2A1 that 
induces resistance of cancer cells to chemotherapy-medi-
ated apoptosis. Silencing lncRNA HORAS5 via siRNA 
significantly reduces IC50 of cabazitaxel, enhancing effi-
cacy of chemotherapy in prostate cancer therapy [372]. 
Although studies have clearly showed role of siRNA in 

reducing expression level of tumor-promoting lncR-
NAs and suppressing prostate cancer progression [220], 
there are some limitations that should be addressed. As 
it was mentioned, siRNA delivery is a vital requirement 
due to protecting against degradation and providing tar-
geted delivery. However, experiments have just focused 
on using siRNA for downregulating lncRNAs in pros-
tate cancer therapy. Therefore, future experiments can 
focus on using nanoarchitectures for siRNA delivery 
in prostate cancer therapy. Another limitation is that 
experiments have just used siRNA for lncRNA regula-
tion. There are other genetic tools such as shRNA and 
CRISPR/Cas9 that their potential in lncRNA expression 
modulation should be explored.

Pharmacological intervention
In addition to genetic tools, anti-tumor compounds can 
also be utilized for targeting lncRNAs in prostate cancer. 
However, anti-tumor compounds targeting lncRNAs are 
mostly phytochemicals and suffer from poor bioavail-
ability and for introducing them to clinic, strategies such 
as application of drug delivery systems should be consid-
ered to improve their potency [373]. Quercetin is a plant 
derived-natural compound that is extensively applied in 
prostate cancer therapy. Quercetin can suppress pro-
liferation and migration of prostate cancer cells, and 
significantly enhances their response to chemotherapy. 
Furthermore, in order to improve anti-tumor activity 
of quercetin against prostate cancer, nanoparticles have 
been developed for its delivery [374]. LncRNAs are tar-
gets of quercetin in prostate cancer therapy. In this way, 
quercetin down-regulates expression level of MALAT1 
in a concentration- and time-dependent manner. In addi-
tion to in vitro experiment, in vivo experiment on xeno-
graft tumors has shown role of quercetin in suppressing 
prostate cancer progression. By downregulating lncRNA 
MALAT1, quercetin inhibits metastasis via EMT sup-
pression. Furthermore, quercetin inhibits PI3K/Akt path-
way to suppress proliferation [375]. Curcumin is another 
well-known anti-tumor agent, isolated from rhizome and 
root of Curcuma longa that can suppress prostate cancer 
progression via inducing apoptosis and cell cycle arrest, 
down-regulating NF-κB signaling and inhibiting angio-
genesis [376]. Curcumin administration negatively affects 
prostate cancer stem cells and suppresses their growth 
and migration. LncRNA ROR functions as ceRNA to 
reduce miRNA-145, leading to prostate cancer progres-
sion. Curcumin administration reduces ROR expression, 
while it promotes miRNA-145 expression to effectively 
suppress prostate cancer progression [377]. Figure6 
depicts a summary of genetic and pharmacological inter-
ventions for regulating lncRNA expression in prostate 
cancer.
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Biomarker role and clinical application
With respect to high incidence rate and death result-
ing from prostate cancer, it is vital to translate pre-clin-
ical findings to clinic for treatment of prostate cancer 
patients. LncRNAs can be considered as prognostic 
and diagnostic tools in prostate cancer. LncRNA ATB 
is a tumor-promoting factor capable of promoting both 
growth and invasion (EMT) of prostate cancer cells. The 
overexpression of lncRNA ATB is correlated with unde-
sirable prognosis in prostate cancer patients [378]. As 
lncRNAs can affect immune system in providing immune 
evasion of prostate cancer cells, their expression level can 
determine response to immunotherapy [379]. In contrast 
to tumor-promoting lncRNAs that demonstrate high 
expression in prostate cancer, tumor-suppressor lncR-
NAs undergo significant down-regulation. It has been 
reported that lncRNA TINCR has close association with 
clinical T stage, lymph node and distant metastasis in 
prostate cancer. The expression level of TINCR is impor-
tant in clinical course that its low expression shows poor 
prognosis [380]. The downregulation of tumor-suppres-
sor lncRNAs such as DGCR5 reduces survival of prostate 
cancer patients [304]. Therefore, identification of these 
lncRNAs and investigating their expression level can be 
utilized as a reliable and potent prognostic tool [381]. 
Furthermore, it was discussed in previous section that 
expression level of exosomal lncRNAs can be examined 

in serum of prostate cancer patients as diagnostic and 
prognostic tools [332].

Conclusion and remarks
The present review article investigated role of lncR-
NAs in prostate cancer [382–385]. The expression level 
of lncRNAs is different among prostate cancer patients 
and BPH patients, so they can be considered as reliable 
biomarkers. LncRNAs are capable of regulating prolif-
eration and metastasis of prostate cancer cells. Further-
more, autophagy and apoptosis as two major arms of 
programmed cell death, are modulated by lncRNAs 
in prostate cancer. A variety of downstream targets of 
lncRNAs have been identified that among them, STAT3, 
NF-κB, PTEN, PI3K/Akt and miRNAs are the most 
important ones. The tumor-promoting lncRNAs demon-
strate an increase in expression in prostate cancer, while 
expression level of tumor-suppressor lncRNAs under-
goes down-regulation. In addition to proliferation and 
migration, lncRNAs can regulate response of prostate 
cancer cells to chemotherapy and radiotherapy. Based on 
pre-clinical studies, lncRNAs induce resistance to PTX 
and DOX chemotherapy. Therefore, for providing effec-
tive cancer chemotherapy, lncRNAs involved in DOX 
and PTX resistance should be suppressed. Furthermore, 
lncRNAs can inhibit autophagy in mediating radio-
resistance. However, lncRNA and autophagy interaction 

Fig. 6  Therapeutic targeting of lncRNAs in prostate cancer. Anti-tumor compounds such as curcumin and siRNA can be used to decrease 
expression level of tumor-promoting lncRNAs in impairing progression of prostate cancer cells
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should be evaluated with more details due to pro-survival 
and pro-death functions of autophagy in prostate cancer.

To suppress prostate cancer progression, anti-tumor 
immunity is activated, and cytotoxic T cells are vital 
for this purpose. However, lncRNAs can induce PD-1 
expression in preventing proliferation of cytotoxic T cells 
and mediating their apoptosis, leading to immune eva-
sion of prostate cancer. Therefore, for effective immu-
notherapy, it is necessary to identify such lncRNAs to 
improve potential of immunotherapy. In respect to vital 
role of lncRNAs, pharmacological and genetic interven-
tions have been performed to target lncRNAs in favor of 
prostate cancer suppression. For clinical course, lncRNAs 
can be utilized as diagnostic and prognostic tools for 
prostate cancer patients. Future experiments can focus 
on discovering more lncRNAs involved in prostate can-
cer progression/inhibition to pave the way for treatment 
of this malignant condition.
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