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Abstract 

Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer 
hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, 
metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic 
target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We 
summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activi-
ties regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor micro-
environment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies 
also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 
and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination 
therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
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Introduction
STAT3 belongs to the STATs family and comprises 
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and 
STAT6 that share similar structures and functional 
domains [1]. STAT3 is one of the most well-described 
STATs members and which mainly acts as tumor pro-
moting roles in tumor development and progression. 
Apart from the canonical functions such as proliferation, 
apoptosis, metastasis, angiogenesis, drug resistance, self-
renewal of cancer stemness, the newly identified func-
tions such as epigenetic regulation, immune surveillance, 
tumor inflammation, metabolic reprogramming and exo-
some-related biological activities also contribute to the 
oncogenic roles in cancer.

STAT3 historically has been considered “undrugga-
ble”. However, the current development of advanced 
technologies and novel therapeutic strategies in 
STAT3 inhibitors has moved toward “druggable”. A 
series of selective inhibitors that directly or indirectly 
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target STAT3 have been identified in the past three 
decades. Excitingly, most of these inhibitors show 
excellent tumor inhibitory effects in preclinical and 
clinical trials. However, no clinically applicable drugs 
that directly targeting STAT3 has been approved 
for clinical use so far. In this review, we focus on the 
new progress in studies of regulation of STAT3 and 
its essential roles in various biological regulations. 
We also provide a summary of the selective inhibitors 
tested in various preclinical and clinical studies for 
cancer treatment.

Overall reviews of STAT3
Isoforms of STAT3
Structurally, STAT3 mainly consists of the N-terminal 
domain (NTD), coiled-coiled domain, DNA binding 
domain (DBD), linker domain, Src homology 2 (SH2) 
domain and transactivation domain (TAD) [2]. The 
tyrosine residues 705 and serine residues 727 located 
in the C-terminal are considered two primary function 
activation sites, as shown in Fig.  1a. STAT3 gives rise 
to six isoforms, STAT3α, STAT3β, STAT3γ, STAT3δ, 
STAT3ε and STAT3ζ (shown in Table  1). These iso-
forms determine the distinct functions of STAT3. 
STAT3α is the longest isoform, commonly designated 
as STAT3, and contributes most to the canonical func-
tions of STAT3. STAT3 consists of 24 exons. STAT3β 
is generated by alternative splicing at exon 23, causing 
a frameshift and the transactivation domain is replaced 
with seven specific amino acids [8]. Conversely, 
STAT3β plays a tumor suppressive role due to the lack 
of transactivation domain and commonly predicts 
a favorable outcome in tumor patients [9]. A recent 
review of the literature reported that STAT3β cooper-
ates with STAT3α and co-activators to form a ternary 
complex called “spongy cushion”. When the STAT3β 
keeps a relatively high-level in the ternary complex, 
STAT3β suppresses proliferation and self-renewal, 
attenuates invasion, lessens chemotherapy resistance 
and induces apoptosis in cancer [10]. The STAT3γ 
and STAT3δ isoforms are derived from the proteolytic 
processes which are associated with the maturation of 
neutrophil and granulocyte in different stages [3–5]. 
STAT3ε and STAT3ζ, are two novel putative truncated 
forms of K685-acetylated STAT3α. STAT3ζ is reported 
to promote cardiomyocyte formation via acting as an 
adaptor to ErbB4-p38γ signaling cascade. Addition-
ally, N-terminal containing STAT3ε and C-terminal 
containing STAT3ζ share overlapping homology with 
STAT3α [6]. However, the detailed functions of STAT3ε 
need further studies. In this review, we mainly focus on 
the progresses in research of STAT3α.

The canonical and non‑canonical STAT3 signaling 
pathways
As shown in Fig.  1b, the phosphorylation of STAT3 on 
tyrosine 705 is a prominent feature of canonical STAT3 
activation. The canonical STAT3 signaling pathway is 
activated by multiple receptors stimulated by cytokines 
and diverse growth factors [11, 12]. Once STAT3 is 
activated, two monomeric STAT3 form homodimers 
or heterodimers via the tyrosine residue 705 recipro-
cally interact with the SH2 domain and subsequently 
translocate into the nucleus and regulate genes expres-
sion which are involved in sustaining proliferation [13], 
metastasis [14], angiogenesis [15], inflammation [16], 
resisting apoptosis [17], immune suppression [18], 
tumor microenvironment [16], cancer stem maintenance 
[19], and reprogramming metabolism [20], drug resist-
ance [21] and exosome mediation of cancer hallmarks 
activities [22].

In addition to tyrosine 705, serine 727 is another vital 
function site. Phosphorylation of STAT3 Ser727 is trig-
gered by serine or threonine kinases such as CDK5, 
JNK1/2, GSK3α/3β and MAPKs [23, 24]. Recently, non-
canonical STAT3 signaling pathways have gained much 
attention due to their potential roles in cancer. For 
example, the mitochondria STAT3 (mtSTAT3) is found 
to be colocalized with mitochondrial electron transport 
chain (ETC) components [25] and alters cell metabo-
lism, mitochondrial respiration, reactive oxygen species 
(ROS) production and finally promotes carcinogenesis. 
These processes are dependent on the phosphorylation 
of STAT3 Ser727 [26]. In addition to the phosphorylated 
form of STAT3, the unphosphorylated STAT3 (uSTAT3), 
in which the Tyr705 is replaced with phenylalanine, is 
identified interaction with unphosphorylated NF-κB or 
Jun activation domain-binding protein 1 (JAB1) to medi-
ate the transcription of NF-κB and epithelial-mesenchy-
mal transition (EMT) related genes [27, 28].

The hyperactivation and clinical significance of STAT3/
phosphorylated STAT3 in human cancers
There is considerable literature reporting that STAT3 
is constitutively activated in a dozen different cancers 
including solid tumors (breast cancer [29], cervical 
cancer [30], colon cancer [31], pancreatic adenocarci-
noma [32], esophageal squamous cell carcinoma [33], 
non-small cell lung cancer [34], ovarian carcinoma 
[35], et  al.) and hematologic tumors (lymphomas [36], 
acute myeloid leukemia [37], chronic myeloid leukemia 
[38], et  al.). However, in normal cells, the balance of 
STAT3 activation and inactivation is tightly controlled 
by transient activation and feedback inactivation of 
membrane receptors [39]. Elevated expression profiles 
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of STAT3 or p-STAT3 Tyr705 are commonly associated 
with higher clinical stage, higher tumor grade, lymph 
node metastasis, depth of invasion, chemoresistance 
and worse overall survival rate or disease-free survival 
rate [30, 38, 40]. Based on the crucial roles of STAT3 
hyperactivation in cancer development and progres-
sion established in dozen studies over the past decades, 
STAT3 is undoubtedly an encouraging therapeutic tar-
get. This highlights the urgent need to design select and 

potent inhibitors or therapeutic strategies that target 
STAT3 signaling pathway.

Upstream regulation of STAT3
Positive regulation of STAT3
As reported, hyperactivation of STAT3 commonly exists 
in almost all cancer types. The underlying mechanisms of 
elevated expression levels of STAT3 and phosphorylated 

Fig. 1  STAT3 structure and the canonical and non-canonical STAT3 signaling pathways in cancer. A Diagrams of structure and function domains 
of STAT3 with the posttranslational modification residue sites. STAT3 is composed of an N-terminal domain (NTD), DNA binding domain, linker 
domain, Src homology 2 domain (SH2), and a C-terminal transactivation domain (TAD) with a tyrosine phosphorylation residue at 705 and a serine 
phosphorylation residue at 727. Red font represents activation PTM sites, blue font represents inactive PTM sites. B Left part, the canonical STAT3 
signaling pathway is activated by multiple receptors including interleukin-6 (IL-6) and IL-6 family cytokines (IL-11, IL-23) receptors, G-coupled 
receptors (GPCRs), growth factor receptors and Toll-liker receptors which are stimulated by cognate ligands varies from cytokines, hormones, 
angiotensin, sphingosine-1-phosphate, and LPS et al. Traditionally, these receptors lack the intrinsic kinase activity. Once the ligands recognize 
the cognate receptors, the ligand-receptor shifts conformation and activate the JAKs, then provide the anchor site for STAT3 to bind via its 
SH2 domain. In addition to being activated by the membrane receptors, the constitutive activation of STAT3 is also induced by oncoproteins 
with tyrosine kinase activity like SRC and BCR-ABL. Two phosphorylated STAT3 form dimers via the phosphorylated tyrosine residue 705 of one 
monomer interacts with the SH2 domain of another monomer, the dimers subsequently translocate into the nucleus and bind to the specific 
DNA response elements in the promotor regions of the target genes which are involved in proliferation, metastasis, angiogenesis, tumor immune 
suppression, metabolic reprogramming, cancer stemness, drug resistance and exosome activity. Right part, the non-canonical STAT3 signaling 
pathway has three forms including mtSTAT3, unphosphorylated STAT3 and p-STAT3 Ser727 either alone or together with p-STAT3 Tyr705. These 
forms of STAT3 regulate the mitochondrial respiration, NF-κB, and other unknown genes are involved in activities. Created with BioRender.com
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STAT3 are summarized in this part. The positive regula-
tors are listed in Table S1.

Ligands interact with cognate membrane receptors in STAT3 
activation
As shown in Table S1, cytokines IL-6, IL-6 families (IL-
11, oncostatin M, leukaemia inhibitory factor, ciliary neu-
rotrophic factor, IL-31), growth factors (EGF, FGF, IGF, 
PDGF), hormones, angiotensin, sphingosine-1-phos-
phate, and lipopolysaccharide (LPS) are often described 
with activities attributed to STAT3 activation in human 
cancers. Most of these ligands are secreted in platelets, 
macrophages, fibroblasts, keratinocytes, and tumor cells, 
which act in paracrine, autocrine, juxtacrine, or endo-
crine fashions [41]. Of note, IL-6 mediates STAT3 activa-
tion and shows unique functions in androgen-dependent 
prostate cancer progression to the neuroendocrine dif-
ferentiation stage that is clinically called neuroendocrine 
prostate cancer [42, 43], so far, there are no effective 
therapeutic strategies. IL-6 may interact with pro-inflam-
mation or immune cells to induce endocrine effects in 
an autocrine/paracrine manner, which exhibits intrinsic 
pro-tumorigenic actions such as cell proliferation, sur-
vival, migration, invasion, metastasis and extrinsic pro-
tumorigenic actions such as modulate stromal cells to 
shape the microenvironment and cancer inflammation by 
activating STAT3 [39].

Membrane receptors and associated kinases in STAT3 
activation
G-protein coupled receptors (GPCRs) such as angio-
tensin II receptor and sphingosine-1-phosphate recep-
tor (S1PR1) are the two best-known GPCRs to activate 

STAT3 [44, 45]. In addition, the activation of STAT3 
mediated by GPCRs necessitates the involvement of 
JAKs. Toll-like receptors (TLRs) such as TLR2, TLR3, 
TLR4, TLR7, TLR9 are expressed on various immune 
cells, epithelial and stromal compartments and function 
in STAT3 mediated cancer development and progression 
[46]. Elevated expression of TLR2 and TLR9 are corre-
lated with tumor grade and poor survival rates in gastric 
cancer patients [47] and glioma patients [48], separately. 
Increasing TLR3 signaling contributes to STAT3-induced 
upregulation of Wnt5a gene expression as well as the 
growth and motility of the papillary thyroid cancer cells 
[49]. TLR9 agonist such as CpG activates STAT3, which 
restrains the CpG’s immunostimulatory effects. Targeting 
STAT3 can improve the efficacy of TLR9 agonist-based 
immunotherapy, being a checkpoint or the ‘brake’ for 
anti-tumor immune responses [50]. Receptor tyrosine 
kinases (RTKs) such as EGFR, HER2/ErbB2, MET, InsR, 
PDGFR, VEGFR, FGFR, EphA/B, LMR and ALK play 
extremely important roles in human cancers [51]. And 
RTKs-JAKs-STAT3 signaling are well-elucidated signal-
ing networks in cancers involving almost all cancer hall-
mark features [52]. In contrast to RTKs, non-receptor 
kinases (nRTKs) lack receptor-like properties. Besides 
the JAKs family (JAK1, JAK2, JAK3, TYK2) [51], the SRC 
family is the largest subfamily of nRTKs. The SRC activ-
ity and constitutive activating STAT3 are involved in epi-
thelial-to-mesenchymal transition [53] and angiogenesis 
[54]. In addition, the oncoprotein BCR-ABL (Breakpoint-
cluster region and Abelson leukemia proteins) derived 
from nRTKs mutation (chromosomal rearrangement) are 
associated with the development of hematological malig-
nancies, either leukemia, lymphoma, or myeloma via 

Table 1  Isoforms of STAT3

MW Molecular weight, K685 Lysine685

STAT3 isoforms Function Structure MW (KDa) Generating process Ref

STAT3α Canonical activator of transcription; 
Key roles during STAT3 promoting 
cancer development

The longest isoform 92 Alternative splicing [2]

STAT3β Repressor of STAT3; Higher DNA-
binding affinity; Higher stability 
of STATs dimers

Loss of C-terminal (Ser727 missing) 83 Alternative splicing [2]

STAT3γ Regulation of neutrophil survival Loss of C-terminal (Tyr705 
and Ser727 missing)

72 Proteolysis [3–5]

STAT3δ Activated during neutrophils 
and granulocyte maturation (early 
stage)

Loss of C-terminal (Tyr705 
and Ser727 missing)

64 Proteolysis [3]

STAT3ε Played no role in cardiogenesis N-terminal containing; Shares over-
lapping homology with STAT3α

50 Caspase-3 cleavage 
upon K685-acetylation

[6]

STAT3ζ Adaptor of the ErbB4-p38γ signaling 
pathway during the cardiomyocyte 
differentiation

C-terminal containing; Shares over-
lapping homology with STAT3α

45 Caspase-3 cleavage 
upon K685-acetylation

[6, 7]
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STAT3 signaling [55, 56]. Furthermore, many serine or 
threonine kinases such as MAPKs, GSK3α/3β, JNK1/2, 
Pim-3 and ILK are reported to be responsible for phos-
phorylating STAT3 at serine 727 or tyrosine 705 [24, 57].

Long non‑coding RNAs, microRNAs and circular RNAs 
in STAT3 activation
Increasing evidence from recent studies demonstrate 
that lncRNAs such as MIAT, DANCR, FLANC, lncRNA 
ITIH4 antisense RNA 1 (ITHI4-AS1), TNK2-AS1, PVT1 
et  al. promote tumor development and progression via 
directly or indirectly regulating STAT3 signaling [58–61]. 
MicroRNAs such as miR-4449, miR-182-5p, miR-221-3p, 
miR-203 et al. indirectly activate STAT3 mainly by nega-
tively regulating PIAS, SOCS family members [62–65]. 
CircRNA is a new category of functional RNAs. Mecha-
nistically, circRNA is identified as the miRNA sponges 
and suppresses the miRNAs, or interacts with RNA-
binding protein (RBP) and regulates gene expression at 
transcriptional or post-transcriptional levels. Moreo-
ver, the circRNA also displays translational activity [66]. 
Circ-E-Cadherin encodes an oncogenic variant C-E-Cad 
through multiple-round open reading frame transla-
tion, which subsequently associates with the EGFR CR2 
domain and activates STAT3 signaling pathway in main-
taining the tumorigenicity of glioma stem cells [67]. 
Hsa_circ_0068871 targets miR-181a-5p, leading to upreg-
ulation of FGFR3 expression and ultimately promotes 
STAT3 signaling in bladder cancer progression [68]. These 
findings highlight the potential application of non-coding 
RNAs in regulating STAT3 pathway.

Posttranslational modification in STAT3 activation
Although phosphorylation plays a crucial role in STAT3 
activation, other posttranslational modifications, includ-
ing acetylation, methylation and palmitoylation, also acti-
vate STAT3. As shown in Fig. 1a, several residues located 
in NTD, SH2 and TAD domains could be acetylated, 
mainly mediated by p300/CREB-binding protein (p300/
CBP) acetyltransferase. For instance, STAT3 is acetylated 
by p300/CBP at Lys49 and Lys87 and therefore enhanc-
ing STAT3 transcriptional activity [69, 70]. Lys707 and 
Lys709 located in TAD domain are also acetylated by 
p300/CBP, which is required for STAT3 mitochondrial 
translocation and subsequent regulation of pyruvate 
metabolism [71]. Maupali et  al. also demonstrated that 
a histone-modifying enzyme enhancer of zeste homolog 
2 binds to and methylates STAT3 at Lys49 and Lys180, 
leading to enhanced STAT3 activity [72]. Residue Cys108 
could be palmitoylated by DHHC7 (DHHC family mem-
ber of palmitoyltransferases) and promotes STAT3 mem-
brane recruitment and phosphorylation [73].

Negative regulators of STAT3
In normal physiological conditions, the STAT3 activation 
is strictly regulated by some negative regulators to avoid 
excessive stimulation. The negative modulators are listed 
in Table S1.

SOCS proteins, PIAS proteins and protein tyrosine 
phosphatases block STAT3 activity
SOCS family members consist of SOCS1–SOCS7 and 
CIS, most but not all of which block the JAKs–STAT3 
signaling. The regulatory mechanisms employed by 
members of the SOCS family in signaling modulation 
include: inhibition of STAT3 binding to activating recep-
tors, suppression of JAKs, ubiquitination, and subse-
quent degradation of target proteins [74, 75]. SOCS1 and 
SOCS3, the most potent SOCS family members, display 
vital roles in inflammation and cancers. Reduced expres-
sion or mutation of SOCS1 and SOCS3 causes constitu-
tive STAT3 activation, which accelerates the progression 
of pancreatic ductal adenocarcinoma [76], prostate can-
cer [77], glioblastoma [78]. Likewise, lack of SOCS2 regu-
lates the inflammation and tumorigenesis mediated by 
STAT3 in hepatocellular carcinoma [79]. Higher expres-
sion of SOCS4 and SOCS7 associates with earlier tumor 
stage, more favorable OS and RFS in breast cancer [80]. 
Furthermore, lower expression levels of SOCS5 and 
SOCS6 correlate with poor prognosis in liver cancer [81], 
prostate cancer [82] and colorectal cancer [83]. PIAS 
family members consist of PIAS1–PIAS4, which modu-
late signaling by several mechanisms including the block-
ade of the DNA-binding ability of STAT3, recruitment 
of transcriptional co-repressors, and promoting protein 
SUMOylation [84]. PTPs (such as PTPRK, SHP1, SHP2, 
PTPN1, PTPN2, PTPN9) are a large family of phos-
phatases responsible for dephosphorylating tyrosine resi-
dues in phosphorylated proteins, and these enzymes play 
crucial roles in disrupting STAT3 activity [85].

Long non‑coding RNAs and microRNAs block STAT3 activity
Alongside the oncogenic roles of lncRNAs and miR-
NAs, extensive studies have also revealed their tumor 
suppressor roles in diverse cancer types. According to 
recent findings, LINC00908-encoded polypeptide ASRPS 
directly binds to STAT3 at the coiled-coiled domain and 
reduces the activity of STAT3 [86]. Long intergenic non-
coding RNA p21 functions as a tumor suppressor factor 
through directly blocking STAT3 activity and thus inhib-
its G1/S transition and induces apoptosis in head and 
neck squamous cell carcinoma (HNSCC) cells [87]. The 
main mechanisms of miRNA function as STAT3 suppres-
sor are as follows: directly by sequence-complementary 
with STAT3 at 3′-UTR, 5′-UTR or the coding regions; 
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indirectly blocking STAT3 activation through degrading 
the mRNAs of upstream regulators such as IL-6, IL-6R 
and JAKs. For example, miR-124, miR-125, miR-320, 
miR-1301 directly target 3′-UTR of STAT3 and inhibit 
cell cycle progression, proliferation, migration and inva-
sion in bladder cancer [88], gastric cancer [89], lung ade-
nocarcinoma and colorectal cancer [90, 91]. In addition, 
miR-9 and miR-26a directly target the 3′-UTR of IL-6 
mRNA and therefore block IL-6-JAK2-STAT3 signaling 
[92, 93].

Posttranslational modification block STAT3 activity
Since the translational modification is reversible, the 
dynamic equilibrium of acetylation and deacetylation, 
methylation and demethylation are important for main-
taining the activity of STAT3. As shown in Fig.  1a, the 
acetylated STAT3 at Lys615, Lys631 and Lys685 are dea-
cetylated and deacetyliminated by lysyl oxidase 3, which 
suppresses the STAT3 dimerization, abolishes STAT3 
transcriptional activity, and inhibits cell proliferation 
[94]. Methylation of STAT3 on K140 by the histone meth-
yltransferase SET9 blocks the STAT3 activity in response 
to IL-6 [95]. Other translational modifications are also 
identified to block STAT3 activity. For example, AR deg-
radation enhancer ASC-J9® suppresses prostate cancer 
cell invasion via modulating the STAT3 SUMOylation 
at Lys679 to alter the phosphorylation status of STAT3 
[96]. S-Glutathionylation at Cys328 and Cys542 impairs 
STAT3 phosphorylation [97] and alkylation at Cys468 
and thus inhibiting STAT3 DNA-binding ability [98]. 
Moreover, S-Nitrosylation of STAT3 at Cys259 disrupts 
the IL-6 induced STAT3 phosphorylation for genes 
required for inflammatory/immune responses and cell 
proliferation, including cancer [99].

STAT3 in cancers
In this part, we mainly discuss how STAT3 mediates can-
cer hallmarks activities. Parts of target genes regulated by 
STAT3 are listed in Table S2.

Proliferation and resistance to apoptosis
In keeping with the concept that cancer is a disease 
which occurs in the unbalanced status of persisting pro-
liferation and resistance to apoptosis. There are consid-
erable studies on STAT3 promoting cell proliferation, 
survival and resisting apoptosis. The main mechanisms 
of STAT3 regulating proliferation are due to the uncon-
trolled flux through the cell cycle. Cyclin D1, Pim1 and 
c-Myc are found involved in STAT3 mediating the abnor-
mal G1/S phase transition [100, 101]. Moreover, STAT3 
also participates in modulating G2–M phase checkpoint 
by up-regulating the expression of cyclin B1 and Cdc2 via 
early 2 factor [102].

The most extensively-elucidated mechanisms of 
STAT3 in mediating the apoptosis escape are: the con-
stitutive activation of STAT3 promotes the expression 
of anti-apoptotic proteins Bcl-2 and Bcl-2-related fam-
ily members such as BCL-XL, MCL-1 and inhibitor of 
apoptosis proteins (Inhibitor of apoptosis protein-2, sur-
vivin), while downregulating the Fas mediates intrinsic 
apoptotic pathway. Much evidence has shown that Bcl-2, 
BCL-XL, MCL-1 are highly expressed in tumors and cor-
relate with histopathologic features, clinical progress and 
expression levels of phosphorylated STAT3 [103].

Migration, invasion and angiogenesis
Cumulative pieces of evidence show that STAT3 plays 
critical roles in all steps of cancer metastasis including 
invasion, migration, and angiogenesis. Invasion to the 
extracellular matrix by regulating the matrix metallopro-
teinases (MMPs) is a prerequisite for metastasis of cancer 
cell [104]. IL-6/STAT3 upregulates the expression levels 
of MMPs including MMP-1, MMP-2, MMP-7, MMP-9 
via directly interacting with their promotors in several 
aggressive cancers [105]. Moreover, the EMT also plays 
a central role during the initial metastasis. Consider-
able evidence has demonstrated that STAT3 induces the 
expression of EMT associated genes including TWIST, 
ZEB1/2, snail, vimentin, N-cadherin, and suppresses the 
expression of E-cadherin [106–108].

Many studies have shown that STAT3 activation in 
tumor cells governs the secretion of diverse pro-inflam-
matory factors including IL-6, IL-10 and VEGF. Addi-
tionally, it diminishes the activity of natural killer cells, 
thereby facilitating immune evasion by tumor cells dur-
ing circulation [109], as depicted in Fig. 2. After surviv-
ing from the circulation, the fast-growth of survival 
tumor cells metastasized in the distant organs requires 
a high demand for oxygen and nutrients. Thus, angio-
genesis is essential for the tumor growth and metastasis. 
VEGF upregulation is mediated by excess STAT3 signal-
ing in diverse human cancer cell lines [15]. Besides these, 
various studies reveal that STAT3 binds to the promo-
tor of basic fibroblast growth factor (bFGF), a pro-angi-
ogenic growth factor that activates FGFR and promotes 
endothelial cells angiogenesis [110].

Tumor immunosuppression in tumor microenvironment 
(TME)
TME is a complex and heterogeneous system. Many 
tumor immunologists have shown that the cross-talk 
between STAT3 activation in tumor cells and other cell 
populations in TME, tightly controls the immune escape 
and pro-inflammation, thereby facilitating tumor pro-
gression [111]. Here we focus on the underlying mecha-
nisms of STAT3 activation in tumor-infiltrating immune 
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cells, which contribute to both innate and adaptive 
immune suppression, thereby impeding the antitumor 
efficacy of effector cells.

As shown in Fig. 2, the main mechanisms of immune 
escape and tolerance in TME are caused by dysfunction 
of dendritic cells (DCs), myeloid-derived suppressor cells 
(MDSCs), tumor-associated macrophages cells (TAMs) 
and tumor-associated neutrophils cells (TANs). Exhaus-
tion of lymphocytes (T cells) and natural killer (NK) cells 
is mediated by inhibitory signals like cytokines (IL-6, 
IL-10) and growth factors (VEGF, TGFβ). The activa-
tion of immune checkpoint molecules like programmed 
death-1 (PD-1), T cell immunoglobulin and mucin 
domain-containing-3 (TIM-3), cytotoxic T-lymphocyte 
associated protein-4 (CTLA-4) [112], lymphocyte-activa-
tion gene 3 (LAG-3) [113], B7 homolog 3 protein (B7-H3) 
[114], T-cell immunoreceptor with Ig and ITIM domains 
(TIGIT) [115], serve as negative regulators of anti-tumor 
immune response.

Dendritic cells are the antigen presenting cells which 
activate tumor-specific T-cell responses. Yu’s group has 
previously demonstrated that STAT3 activation shuts 
down the innate immune-stimulating molecules such 
as interferon γ induced by CD8+ T cells, pro-inflam-
mation cytokines (IL-12, tumor necrosis factor-α) and 
chemokines (C-C Motif Chemokine Ligand 5 (CCL5), 
C-C Motif Chemokine Ligand 9 (CCL9)), and suppresses 
the maturation of dendritic cells via secreting tumor-
associated factors such as IL-6, IL-10, VEGF which in 
turn activate STAT3 in a positive feedback loop [111]. 
Increasing expression of STAT3 leads to the accumula-
tion of immature dendritic cells [116]15. Accordingly, 
blocking the STAT3 activity in tumor cells leads to the 
maturation of dendritic cells [109].

The expansion and activation of MDSCs have a 
remarkable function in immune response suppres-
sion and enhancing tumor progression. STAT3 activa-
tion plays crucial roles in differentiation and expansion 

Fig. 2  STAT3 regulates immunosuppression and the crosstalk between tumor cells and immune cells in TME. Left panel, STAT3 activation induces 
the immunosuppression of innate immune, adaptive immune cells, as well as tumor-promoting activities of fibroblasts and endothelial cells. 
STAT3 activation promotes the expansion and proliferation of immunosuppressive MDSC and B cells, and drives the expansion and pro-tumor 
M2 polarization of immunosuppressive Treg cells and macrophage cells. Moreover, STAT3 activation simultaneously induces the expression 
of immune checkpoint molecules including PD-1, TIGIT and CTLA-4 in these cells. In addition, STAT3 activation impairs the immune-associated 
antitumor activities of neutrophils, CD8+ T cells and NK cells. STAT3 activation also suppresses the antitumor activity of dendritic cells via disrupting 
the maturation and antigen presentation. Purple fonts represent the innate immune cell subsets, orange fonts represent adaptive immune cell 
subsets. Red arrows represent tumor promoting function and blue arrows represent the decreasing antitumor function. Right panel, STAT3 regulates 
the crosstalk between tumor cells and immune cells in TME. Increasing STAT3 activities in tumor cells promotes the production of IL-6, IL-10, VEGF, 
TGFβ. STAT3 activation and these cytokines and factors mediated the expansion and polarization of MDSC and M2 macrophage. The increasing 
STAT3 activities diminish the maturation of dendritic cells which leads to the accumulation of Treg cells and thus blocks the antitumor activities 
of CD8+ T and NK cells. Created with BioRender.com
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of MDSC [117]. Gabrilovich DI’s group reported that 
STAT3 potentially regulates the survival and pro-
liferation of myeloid progenitor cells and prevents 
them from differentiating into mature myeloid cells 
via upregulating cyclin D1, survivin, BCL-XL, thereby 
inducing immune suppression [118].

Tumor-associated macrophage cells represent the 
predominant immune cell population in TME and exert 
pivotal roles in promoting tumor growth, angiogenesis, 
drug resistance and immunosuppression [119, 120]. 
Recently, studies have found that IL-6 promotes nor-
mal macrophages to differentiate into M2 macrophages 
mediated by STAT3 and therefore supports tumor pro-
liferation in gastric cancer [121]. Moreover, M2-polar-
ized macrophages convert to the anti-tumor M1 type 
when STAT3 signaling is disrupted [122]. The IL-27/
STAT3 signaling axis also induces the expression of 
immune checkpoint molecules including programmed 
death-1 (PD-1) and programmed death-2 (PD-2) in 
macrophages in lymphoma [112].

Tumor-associated neutrophil cells are also one of 
the most infiltrating immune cells within the tumors. 
High expression of STAT3 in neutrophils attenuates 
their tumor-killing activities [123]. Since IFN-β sup-
presses the activity of STAT3, IFN-β–deficient mice 
display more neutrophils with higher levels of VEGF 
and MMP9, both regulated by STAT3, thus promoting 
tumor growth [124]. The cancer-associated fibroblasts 
(CAF) protect the PD-L1+ neutrophils from apoptosis 
and foster immune suppression through the IL6-STAT3 
pathway in hepatocellular carcinoma [125]. Moreover, 
neutrophils enhance the migration, invasion and EMT 
of gastric cancer cells through the IL-17a/JAK2/STAT3 
signaling, meanwhile blocking the IL-7a or disrupting 
the JAK2/STAT3 signaling increase the tumor cytotox-
icity of neutrophils against the cancer [126].

T regulatory cells (Treg cells) are a unique subpopu-
lation of CD4+ T cells which inhibit T cell-mediated 
cytotoxicity or produce the soluble immunosuppres-
sive molecules including IL-10, TGFβ, and adenosine 
[127]. In cancer patients, high numbers of Treg cells 
are associated with lymph nodes, histological grade, 
and TNM stage [128]. One study demonstrates that 
STAT3 is a transcription cofactor for FOXP3 and 
maintains the phenotype and function of Treg cells. 
Ablating STAT3 suppresses the expression of FOXP3 
and therefore inhibits the function of CD25+CD4+ 
Treg cells [127]. Evidence has shown that activation 
of STAT3 stimulated by IL-10 and TGFβ in tumor-
infiltrating DCs impedes CD8+ T cell function, and 
contributes to accumulation and proliferation of 
tolerogenic Treg cells inside tumors [123]. Moreover, 
CTLA-4 is constitutively expressed on CD25+CD4+ 

Treg cells and thus contributes to maintaining its 
immunologic self-tolerance [129].

CD8+ T cells (cytotoxic T cells, Tc) play a pivotal role 
in exerting positive immune control over cancer pro-
gression. STAT3 is reported to inhibit the CD8+ T cells 
accumulation in tumor and thus inhibiting the immune 
response through downregulating CXCR3/CXCL10 
axis [130]. Ablating STAT3 in engineering CD8+ T cells 
results in enhanced tumor antigen-specific T cell activity 
and tumor growth inhibition [131]. Another group has 
demonstrated that one STAT3-blocked whole-cell vac-
cine impairs the TIGIT expression in the CD8+ T cells 
[132]. As previously mentioned, CD8+ T cells show cru-
cial roles in Treg cells mediated immune suppression. 
P-STAT3 is upregulated in circulating CD8+ T cells and 
is associated with elevated levels of IL-4, IL-6 and IL-10 
as well as reduced level of interferon γ, therefore contrib-
uting to the pathogenesis of HCC [133].

Extensive studies have demonstrated that B cells have 
yin and yang roles in tumor development and progres-
sion [134]. Meanwhile, STAT3 activation in B cells 
promotes the angiogenesis in melanoma and lung can-
cer [135]. Moreover, increased B cell infiltration and 
p-STAT3 expression in cancers are associated with 
poorer survival [136]. Furthermore, Herrmann and 
co-workers have demonstrated that the CTLA4/Tyk2/
STAT3 axis is critical to the proliferation and survival 
of B cells and thus leads to the immune suppression in 
melanoma and lymphoma [137].

Natural killer cells mediate the innate defense to pro-
tect the host against viral infection and the progression 
of cancerous cells. NK cells also have critical roles in 
regulating the activity of T cells, DCs, neutrophils, mac-
rophages in TME. Nicholas has given a systemic sum-
mary of STAT3’s negative functions on NK cell biology, 
including NK development, activation, target cell kill-
ing, and fine-tuning of the innate and adaptive immune 
responses [138].

Collectively, STAT3 plays leading roles in the immu-
noediting from immune surveillance to immune escapes 
in the microenvironment. Therefore, a novel therapeu-
tic approach involving the targeted inhibition of STAT3 
combined with the restoration of aberrant immune 
escape mechanisms within the tumor microenvironment 
represents a promising strategy that has gained signifi-
cant traction in ongoing clinical trials.

Reprogramming metabolisms
Apart from the canonical activities of STAT3 in pleio-
tropic effects on a spectrum of tumor processes, STAT3 
also functions as a hub for energy and matter metabo-
lism via its different subcellular activities such as nuclear, 
mitochondrial, and cytoplasmic STAT3 activities. As 
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shown in Fig.  3, we emphasize the functions of mito-
chondrial STAT3 on enhancing the activity of the ETC, 
stimulating the ATP synthesis, restricting ROS produc-
tion, maintaining mitochondrial permeability transition 
pore (MPTP), and promoting mitochondrial Ca2+ influx 
[139]. We also highlight that STAT3 signaling regulates 
the Warburg effects [71], fatty acid oxidation [140], and 
amino acid metabolism [141] of cancer cells. In these 
ways, STAT3 shapes the metabolism to provide more 
favorable energy and metabolic intermediates for rapid 
tumor growth in the conditions of metabolic stress.

Mitochondrial STAT3 (mtSTAT3) is required for 
optimal function of mitochondria [25, 142]. mtSTAT3 
directly incorporates into complex I located in the inner 
mitochondrial membrane via specifically binding to the 
retinoid-interferon-induced mortality (GRIM-19), an 
integral component of complex I, enhancing the electron 
transfer through complex I, II, III, IV and V of ETC, pro-
moting the ATP synthase activity and thus attenuating 
the ROS production [143]. The mtSTAT3 opens a new 

area of STAT3 tumor-promoting roles in cancer research. 
The accelerating mitochondrial respiration, decreas-
ing ROS production and calcium retention triggered by 
mtSTAT3 provide privileged advantages for the cancer 
progression [26].

Recently, mtSTAT3 is also reported to regulate the 
immune response. mtSTAT3 enhances mitochondrial 
Ca2+ mediated motility of CD4+ T cells which is essen-
tial for them to find and reach their targets and mediate 
pathogenesis [144]. mtSTAT3 may participate in CD8+ 
T cell memory enhanced by IL-21 and the production of 
antibody mediates by IL-21 in B cells [145]. Moreover, the 
conventional STAT3 transcriptional function in CD4+ T 
cells differentiating into Th17 cells is later complimented 
by mtSTAT3 sustains pathogenic Th17 cell proliferation 
and cytokine response to antigen [146]. One group also 
identified that mitochondrial oxidative phosphorylation 
regulates the fate decision between pathogenic Th17 and 
regulatory T cells which requires the participation of 
mtSTAT3 [147].

Fig. 3  STAT3 regulates the aerobic glycolysis, lipid metabolism, glutamine metabolism and energy production in tumor cells. The STAT3 activation 
regulates these metabolic reprogramming through the transcriptional regulation of genes involved in these processes, which contribute 
to multiple hallmarks of cancer including proliferation, immunosuppression, cancer stemness and drug resistance. Moreover, the mtSTAT3 
accelerates ETC activity, decreases ROS production and MPTP opening, and promotes the calcium retention via binding to GRIM-19, which provides 
privileged advantages for the cancer progression. Created with BioRender.com
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STAT3 mediates the Warburg effect by enhancing 
aerobic glycolysis and reducing oxidative phosphoryla-
tion even in the presence of oxygen in several cancer 
types. The high expression of HIF-1α and Myc medi-
ated by STAT3 commonly play key roles in this meta-
bolic switch [148]. Furthermore, STAT3 regulates aerobic 
glycolysis by stimulating hexokinase 2 in breast cancer 
[149], and upregulating lactate dehydrogenase A (LDHA) 
in myeloma [150]. PKM2, a key player of the Warburg 
effect which is induced by HIF-1α, and STAT3 acts as 
HIF-1α/PKM2 feed-back loop participants which in turn 
enhances the Warburg effect in cancer [151, 152].

Recently, the crosstalk between lipid metabolism and 
tumorigenesis mediated by STAT3 are observed through 
the cytokines, hormones and adipokines, which parac-
rine or endocrine secreted by the adipose tissues around 
the tumor cells. For example, leptin, an adipokine, stimu-
lates STAT3 activation, and promotes the fatty acid oxi-
dation (FAO) via inducing the expression of carnitine 
palmitoyltransferase 1B (CPT1B), which finally resulted 
in the inhibition of CD8+ T effector cell glycolysis and 
promotion the progression of breast tumor [20]. Further-
more, the JAK/STAT3 mediates enhancement of FAO, 
thereby promoting the cancer stem cell self-renewal 
and chemoresistance in several cancer types including 
breast cancer [153], lung cancer [154] and gastric can-
cer [155]. STAT3 also upregulates the expression of fatty 
acid synthase (FASN), which mediates de novo fatty acid 
synthesis [156]. Several studies have demonstrated that 
FASN is commonly upregulated in malignant tumor and 
promotes the tumor progression [157]. In addition, the 
pro-inflammatory cytokine IL-17A promotes the expres-
sion of STAT3 mediating fatty acids binding protein 4 
(FABP4), which acts synergistically with fatty acid recep-
tor CD36 to initiate the uptake of fatty acids to fuel ovar-
ian cancer growth [158]. One group recently reported 
that the lipid metabolic regulators such as SREBP1, fatty 
acid transporter CD36, and FABP6 influence the meta-
static potential of cancer cells [159]. All of these genes 
display co-dependency with STAT3 transcription [160, 
161]. Targeting of CD36 with neutralizing antibodies 
impairs metastasis in human melanoma, breast and oral 
cancers [162]. Thus, the STAT3 mediates lipid metabo-
lism may drive the metastatic potential of malignancies.

STAT3 also regulates amino acid metabolism. Many 
cancer cells are addicted to glutamine, which serves to 
generate peptides (including glutathione) and proteins 
which contribute to cancer progression. Recently, one 
group demonstrated that STAT3 regulates glutaminoly-
sis and amino acid (glutamine, glutathione) influx as the 
anaplerotic reactions to the TCA cycle in leukemia stem 
cells by promoting expression of MYC, which in turn reg-
ulates the transcription of SLC1A5 [141]. Consequently, 

dual-inhibition of glutamine entry into the tricarboxylic 
acid cycle (TCA cycle) and STAT3 signaling provide a 
promising therapeutic strategy for ovarian cancer [163].

Cancer stemness maintenance
Cancer stemness cells (CSCs) are defined as the self-
renewing cancer cells that promote tumor initiation, 
metastasis, relapse, and therapeutic resistance. The main 
ways by which STAT3 modulates stemness are through 
mediation of EMT and the immunity program [164]. 
STAT3 activation induces the EMT and promotes gen-
eration of CSCs through upregulating EMT associated 
transcription factors including Snail, Zeb1, JUNB, and 
Twist-1 or Nanog/slug axis [165]. Accordingly, blocking 
the EMT is a promising strategy for CSC targeting. Fur-
thermore, STAT3 is reported to regulate the CSCs mark-
ers like CD24, CD34, CD44, CD90, CD133 and aldehyde 
dehydrogenase (ALDH) [166, 167]. More recent evidence 
indicates that immune cells from the microenvironment 
contribute to the phenotype of CSCs [168]. For example, 
TAMs promote the CSC-like phenotypes in breast can-
cer via activating a paracrine EGFR/STAT3/SOX-2 sign-
aling pathway [169]. Paracrine-derived IL-8 and GRO 
chemokines secreted by the M2 macrophages in inflam-
matory breast cancer promote mesenchymal and CSC-
like phenotypes [170].

Chemoresistance
The main mechanisms of STAT3 in regulation of chem-
oresistance are due to the extensive cancer hallmark 
features of STAT3, the feedback loops or altered cross-
talk between STAT3 and other signaling pathways. For 
instance, the STAT3/OcT-4/c-Myc axis facilitates the 
enrichment of CSCs, which drives the triple-negative 
breast cancer cells’ resistance to doxorubicin treatment 
[21]. Furthermore, the feedback activation of STAT3 pro-
motes secondary drug resistance in TKI therapy (block-
ing EGFR, FGFR, MEKs, HER2, ALK, MET, KRAS), 
chemotherapy or radiotherapy. This acquired resistance 
is generally induced by the mutation, epigenetic modi-
fication or abnormal expression of the drug target gene, 
which promote parallel activation of STAT3 pathways 
[171]. The reprogramming of TME such as hypoxia, 
inflammatory cytokines, abnormal pH, or altered cross-
talk between tumor cells and microenvironment as dis-
ease progresses also accelerates a secondary STAT3 
activation following primary therapy [172, 173]. For 
example, the cancer-associated fibroblasts treated with 
cisplatin simulated IL-11 upregulated and subsequently 
activated STAT3, which finally promotes the lung adeno-
carcinoma cell resistance to cisplatin [174]. MEK inhi-
bition leads to autocrine activation of STAT3 via the 
parallel activation of the second RTKs like FGFR and 
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JAKs [175]. Y-box binding protein-1 was initially found 
to enhance drug resistance via upregulating ATP-bind-
ing cassette (ABC) transporters members and eventu-
ally leading to the upregulation of P-glycoprotein [176]. 
Taken together, these connections provide possible com-
pensatory mechanisms, allowing cells to respond more 
adaptively to the dynamic environment.

STAT3 and exosome mediates tumor hallmarks’ activities
Exosome is a subset of extracellular vesicles secreted by 
most eukaryotic cells. As the rapid advances in exosome 
mediates biological activities, many studies suggest that 
exosome tightly crosstalk with STAT3-mediated cancer 
hallmark features. The exosome p120-catenin inhibits 
the liver cancer cells proliferation via STAT3. Meanwhile, 
blocking STAT3 by inhibitor abolishes the tumor-sup-
pressive function of exosome p120-catenin [22]. Hypoxic 
bone marrow-derived mesenchymal stem cells derived 
exosome mediates transfer of several miRNAs that pro-
mote metastasis of lung cancer cells via STAT3-induced 
EMT [177]. Furthermore, p-STAT3-containing exosomes 
contribute to acquired 5-FU resistance in colorectal 
cancer [178]. Glioblastoma stem cells derived exosomes 
release STAT3 and facilitate the accumulation of PD-L1 
and M2 macrophage which eventually trigger the immu-
nosuppressive microenvironment [179]. Exosome-based 
inhibitors open up new horizons for STAT3 drug discov-
ery. Chuang and co-workers found a novel STAT3 inhibi-
tor, pacritinib, which overcomes temozolomide resistance 
via downregulating miR-21-enriched exosomes from M2 
glioblastoma-associated macrophages [180]. Accordingly, 
targeting STAT3 provides a basis for using exosomes to 
serve as a strategy in clinical therapeutics.

Pharmacological agents targeting STAT3
In the past three decades, many attempts have made aims 
at developing the selective and potent STAT3 inhibitors. 
In the following section, we will emphasize the direct and 
indirect STAT3 inhibitors relevant to pre-clinical devel-
opment and clinical trials (as shown in Fig. 4). The STAT3 
inhibitors are including but not limited to those listed in 
Tables  2 and 3. The cell-based efficacy, the administra-
tion of animal models and the information of clinical tri-
als are provided. Due to the comprehensive reviews that 
have previously covered this topic, we mainly focus on 
discussing the latest research and the novel insights on 
STAT3 inhibitors.

Direct inhibitors
The structure-based approach is the main strategy to 
develop the direct STAT3 inhibitor. The N-terminal 
domain, coiled-coiled domain, linker domain, especially 
DNA-binding domain and SH2 domain of STAT3 are 

endowed with protein-DNA interacting and protein-pro-
tein interacting function, which makes STAT3 amenable 
to direct targeting. These directly inhibitors are generally 
classified into four categories: small molecule inhibitors, 
peptide-based inhibitors, antibody-based inhibitors and 
oligonucleotide-based inhibitors.

The N-terminal domain of STAT3 is involved in the 
STAT dimers in forming the tetramers and chroma-
tin structure remodeling [274]. And the coiled-coiled 
domain is responsible for the recruitment of STAT3 to 
the membrane IL-22 receptors and nuclear translocation. 
Until now, ST3-H2A2 [181] and MS3–6 [182] have been 
the only 2 N-terminal and coiled-coiled domain-based 
inhibitors of STAT3. MS3–6 is an intracellular expres-
sion monobody fused to an E3 ubiquitin ligase substrate 
receptor VHL, which owns high affinity towards STAT3 
with an extremely low KD value = 31 ± 6 nM [182].

The primary functions of DBD are binding to 
interferon-γ activation site (GAS) sequences or human 
serum-inducible element within the promotor sites of 
specific target genes, resulting in the transcription. Con-
sequently, blocking the function of DBD is one of the 
most important strategies for developing STAT3 direct 
inhibitors. Small molecules such as InS3-54A18, galiella-
lactone, SG-1709, SG-1721, GPA512, HJC0152, silibinin, 
HO-3876, LC28, MMPP, bruceantinol, peptide aptam-
ers such as DBD-1-9R, oligonucleotides such as 15-mer 
duplex ODN, and platinum-based compounds such 
as CPA-1 and CPA-7 are inhibitors targeting the DBD 
domain. Bruceantinol, a recently reported STAT3 DBD 
selective inhibitor, dramatically attenuates the prolifera-
tion of colorectal cancer (CRC) cells with a nanomolar 
concentration. Moreover, 3 pM of bruceantinol is enough 
to inhibit STAT3 binding to the target genes (IC50 = 2.4 
pM). Notably, BBI-608 (Napabucasin), is the most prom-
ising STAT3 inhibitor that may successfully pass the 
clinical trials, which now have entered clinical phase III 
investigation. BBI-608 is a first-in-class cancer stemness 
inhibitor. It significantly inhibits the c-Myc, β-catenin, 
Nanog and Sox2 mediate cancer stemness [275]. Many 
early phase I and II clinical trials have determined the 
safety and efficacy of monotherapy and in combination 
with standard chemotherapies [276]. Another phase 
III trial assessed the overall survival rate of napabuca-
sin monotherapy in 282 refractory advanced colorectal 
cancer patients. The overall survival rate was not signifi-
cantly different. However, in a prespecified biomarker 
analysis of pSTAT3-positive patients, the napabucasin 
group displayed a longer survival than the placebo group 
(NCT01830621).

So far, BPMB is the only one inhibitor selectively tar-
geting the linker domain of STAT3. Tatsuya’s group 
found that BPMB blocks the STAT3 activation through 
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the acylation of the linker domain. One group specifi-
cally examined the effects of an array of mutants in 
the STAT3 linker domain, and they found that STAT3 
linker domain mutants play an essential role in inhib-
iting STAT3 transcriptional activation because there 
were functional interactions between the linker and 
the DNA binding domain and the SH2 domain [277]. 
These researches reveal the hidden functions of linker 

domain and provide new strategy for developing STAT3 
inhibitors.

The SH2 domain is the most favorable and best-
described target domain. It has a dual- mechanistic 
function, one is being recruited to the receptors for 
phosphorylating and the other is binding to the phos-
phor-tyrosine-peptide ligand of another STAT3 mono-
mer then forming the functional STAT3 dimers and 

Fig. 4  Summary of STAT3 direct inhibitors and indirect inhibitors and the combination strategies. Upper panel, an overview of STAT3 direct 
inhibitors and indirect inhibitors. Lower panel, STAT3 inhibitors in combination with chemotherapy, radiotherapy, targeted therapy, immunotherapy, 
and dual-inhibiting of STAT3 mediate metabolic alteration of tumor cells and immune cells. Created with BioRender.com



Page 13 of 29Hu et al. J Exp Clin Cancer Res           (2024) 43:23 	

Ta
bl

e 
2 

In
hi

bi
to

rs
 o

f S
TA

T3
 in

 p
re

-c
lin

ic
al

 s
tu

di
es

Ty
pe

D
ru

g 
na

m
es

Ce
ll-

ba
se

d 
effi

ca
cy

(IC
50

/E
C5

0/
G

I5
0)

A
ni

m
al

 m
od

el
s

(T
yp

es
, a

dm
in

is
tr

at
io

n)
Re

f

D
ire

ct
 in

hi
bi

to
rs

N
TD

ST
3-

H
2A

2
(P

ep
tid

e)
Th

e 
IC

50
 o

f p
ro

st
at

e 
ca

nc
er

 c
el

ls
 (L

N
Ca

P, 
PC

3,
 D

U
14

5)
 

w
er

e 
le

ss
 th

an
 5

 μ
M

.
N

A
[1

81
]

CC
D

M
S3

–6
 (A

b)
N

A
N

A
[1

82
]

D
BD

In
S3

-5
4A

18
 (S

M
)

Lu
ng

 c
an

ce
r c

el
ls

 (A
54

9,
 H

12
99

) a
nd

 b
re

as
t c

an
ce

r c
el

ls
 

(M
D

A
-M

B-
23

1,
 M

D
A

-M
B-

46
8)

, 3
.2

–4
.7

 μ
M

.
A

54
9 

xe
no

gr
af

t, 
20

0 
m

g/
kg

, o
ra

l d
os

in
g 

2–
3 

tim
es

 a
 w

ee
k 

fo
r 4

 w
ee

ks
.

[1
83

]

G
al

ie
lla

la
ct

on
e 

(S
M

)
D

oc
et

ax
el

-r
es

is
ta

nt
 D

U
14

5 
ce

lls
 s

ph
er

es
 (6

.2
 μ

M
), 

do
ce

ta
xe

l-s
en

si
tiv

e 
D

U
14

5 
sp

he
re

s 
(1

0.
1 

μM
)

D
U

14
5 

xe
no

gr
af

t, 
1 

m
g/

kg
 a

nd
 3

 m
g/

kg
, i

.p
 in

je
ct

io
n 

Q
D

 
fo

r 3
 w

ee
ks

.
[1

84
, 1

85
]

SG
-1

70
9 

(S
M

)
M

D
A

–M
B-

46
8 

(1
0.

14
 μ

M
)

N
A

[1
86

]

SG
-1

72
1 

(S
M

)
M

D
A

–M
B-

46
8 

(6
.9

 μ
M

)
0.

5 
m

g/
kg

, i
.p

 3
 ti

m
es

/w
ee

k 
fo

r 2
0 

da
ys

[1
86

]

G
PA

51
2 

(S
M

)
D

U
14

5 
(4

.8
1 

m
M

)
O

ra
lly

, D
U

14
5 

be
ar

in
g 

nu
de

 m
ic

e,
 4

0 
m

g/
kg

, Q
D

 fi
ve

 
tim

es
/w

ee
k.

[1
87

]

H
JC

01
52

 (S
M

)
A

G
S 

an
d 

M
KN

45
, l

es
s 

th
an

 1
0 

μM
.

M
KN

45
 b

ea
rin

g 
BA

LB
/c

 n
ud

e 
m

ic
e,

 7
.5

 m
g/

kg
 H

JC
01

52
 

di
ss

ol
ve

d 
in

 1
00

 μ
L 

PB
S 

i.p
 tw

ic
e 

w
ee

kl
y 

fo
r 2

1 
da

ys
.

[1
88

]

Si
lib

in
in

 (S
M

)
M

D
A

-M
B-

23
1,

 2
00
―

25
0 

μM
.

Fe
m

al
e 

SK
H

-1
 h

ai
rle

ss
 m

ic
e,

 1
%

 (w
/w

) s
ili

bi
ni

n 
fe

d 
in

 d
ie

t, 
le

ss
 tu

m
or

 n
um

be
rs

 in
 U

VB
 c

au
se

d 
tu

m
or

ig
en

-
es

is
.

[1
89

, 1
90

]

H
O

-3
87

6 
(S

M
)

N
A

A
27

80
 b

ea
rin

g 
BA

LB
/c

 n
ud

e 
m

ic
e,

 H
O

-3
86

7 
w

as
 m

ix
ed

 
w

ith
 th

e 
an

im
al

 fe
ed

 (H
ar

la
n 

Te
kl

ad
) a

t 3
 d

iff
er

en
t l

ev
el

s 
(2

5,
 5

0,
 a

nd
 1

00
 p

pm
).

[1
91

]

LC
28

 (S
M

)
H

12
99

 (8
.1

 ±
 4

.1
 μ

M
), 

SK
O

V3
 (3

.7
 ±

 0
.7

 μ
M

), 
SK

O
V3

/D
D

P 
(1

4.
7 

±
 2

.4
 μ

M
)

N
A

[1
92

]

M
M

PP
 (S

M
)

N
C

I-H
46

0 
(1

.9
5 

μg
/m

L)
, N

SC
LC

 (1
2.

3 
μg

/m
L)

N
C

I-H
46

0 
xe

no
gr

af
t m

od
el

 a
nd

 P
D

X 
m

od
el

, 2
.5

–5
 m

g/
kg

, i
.p

. t
w

ic
e 

a 
w

ee
k 

fo
r 3

 w
ee

ks
.

[1
93

]

Br
uc

ea
nt

in
ol

 (S
M

)
H

C
T1

16
 (1

8.
7 

±
 3

.3
 n

M
), 

H
C

T1
16

 p
53

−
/−

(1
8.

7 
±

 3
.3

 n
M

), 
H

C
A

-7
 (2

3.
6 

±
 4

.8
 n

M
), 

H
63

0 
(4

3.
2 

±
 5

.9
 n

M
), 

H
63

0R
1 

(4
9.

7 
±

 4
.6

 n
M

)

H
C

T1
16

 tu
m

or
 b

ea
rin

g 
xe

no
gr

af
ts

, 2
 m

g/
kg

 a
nd

 4
 m

g/
kg

; i
.p

. t
hr

ic
e 

pe
r w

ee
k.

[1
94

]

D
BD

-1
-9

R 
(P

ep
tid

e)
U

26
6 

ce
lls

, 2
70

 n
M

N
A

[1
95

]

15
-m

er
 d

up
le

x 
O

D
N

 (O
lig

on
uc

le
ot

id
es

)
SC

C
H

N
 C

el
l, 

le
ss

 th
an

 2
5 

μM
N

A
[1

96
]

C
PA

-7
(P

la
tin

um
-b

as
ed

)
RM

-9
 c

el
ls

, 2
0 

μM
0.

75
 m

g/
kg

, 1
.5

 m
g/

kg
, R

M
-9

 tu
m

or
 b

ea
rin

g 
C

57
BL

/6
 J 

m
ic

e,
 ta

il 
ve

in
 in

je
ct

io
n 

ev
er

y 
th

re
e 

da
ys

[1
97

]



Page 14 of 29Hu et al. J Exp Clin Cancer Res           (2024) 43:23 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Ty
pe

D
ru

g 
na

m
es

Ce
ll-

ba
se

d 
effi

ca
cy

(IC
50

/E
C5

0/
G

I5
0)

A
ni

m
al

 m
od

el
s

(T
yp

es
, a

dm
in

is
tr

at
io

n)
Re

f

Li
nk

er
 d

om
ai

n
BP

M
B 

(S
M

)
N

A
N

A
[1

98
]

SH
2 

do
m

ai
n

Pe
rip

lo
ge

ni
n 

(S
M

)
KY

SE
30

 (1
.7

07
 ±

 0
.2

75
 μ

M
);

KY
SE

70
 (2

.8
98

 ±
 0

.9
59

 μ
M

);
KY

SE
45

0 
(1

.2
01

 ±
 0

.1
67

 μ
M

).

ES
CC

 p
at

ie
nt

-d
er

iv
ed

 x
en

og
ra

ft
, i

.p
 B

ID
, 8

 m
g/

kg
 

an
d 

16
 m

g/
kg

.
[3

3]

O
D

Z1
01

17
 (S

M
)

N
A

G
SC

52
8 

tu
m

or
 b

ea
rin

g 
BA

LB
/c

 n
u/

nu
 n

ud
e 

m
ic

e,
 i.

p 
in

je
ct

io
n,

 0
.1

 m
g/

kg
 o

r 1
 m

g/
kg

, s
ix

 ti
m

es
 p

er
 w

ee
k;

 
U

87
-M

G
 tu

m
or

 b
ea

rin
g 

BA
LB

/c
 n

u/
nu

 n
ud

e 
m

ic
e,

 B
ID

 
fo

r 2
 w

ee
ks

.

[1
99

]

N
4 

(S
M

)
C

A
PA

N
-2

, P
A

N
C

-1
, M

IA
PA

C
A

-2
, B

XP
C

-3
, H

PA
C

, C
FP

A
C

-1
, 

le
ss

 th
an

 4
 μ

M
.

PA
N

C
-1

 c
el

ls
 tu

m
or

 b
ea

rin
g 

BA
LB

/c
-n

ud
e 

m
ic

e,
 i.

p 
Q

D
 

fo
r 2

0 
da

ys
.

[2
00

]

SD
-3

6 
(S

M
)

M
O

LM
-1

6 
(3

5 
nM

), 
D

EL
 (1

.4
8 

μM
), 

Ka
rp

as
 (0

.9
8 

μM
), 

KI
-J

K 
(0

.1
8 

μM
), 

SU
-D

H
L-

1 
(0

.2
5 

μM
)

SC
ID

 m
ic

e 
be

ar
in

g 
M

O
LM

-1
6 

tu
m

or
s; 

10
0 

m
g/

kg
 

w
ee

kl
y;

 5
0 

m
g/

kg
 3

 ti
m

es
 p

er
 w

ee
k;

 1
00

 m
g/

kg
 tw

ic
e 

a 
w

ee
k 

fo
r 3

 w
ee

ks
.

[2
01

]

St
at

tic
 (S

M
)

O
SC

-1
9 

(3
.4

81
 ±

 0
.9

53
 μ

M
), 

U
M

-S
CC

-1
7B

 
(2

.5
62

 ±
 0

.4
09

 μ
M

), 
Ca

l3
3 

(2
.2

82
 ±

 0
.4

23
 μ

M
), 

U
M

-S
CC

-2
2B

 
(2

.6
48

 ±
 0

.5
42

 μ
M

)

U
M

-S
CC

-1
7B

 tu
m

or
-b

ea
rin

g 
m

ic
e,

 5
0 

m
g/

kg
, o

ra
lly

 g
av

-
ag

e,
 5

 d
ay

s 
a 

w
ee

k 
fo

r 4
 w

ee
ks

.
[2

02
]

S3
I-2

01
 (S

M
)

LN
Ca

P 
(3

00
 μ

M
)

H
um

an
 b

re
as

t (
M

D
A

-M
B-

23
1)

 tu
m

or
-b

ea
rin

g 
m

ic
e 

w
er

e 
gi

ve
n 

S3
I-2

01
 (5

 m
g/

kg
) i

.v
. e

ve
ry

 2
 o

r e
ve

ry
 3

 d
ay

s.
[2

03
, 2

04
]

S3
I-1

75
7 

(S
M

)
M

D
A

-M
B-

46
8,

 M
D

A
-M

B-
23

1,
 H

35
8,

 A
54

9 
(le

ss
 

th
an

 2
00

 μ
M

).
B1

6-
F1

0 
m

el
an

om
a 

xe
no

gr
af

t, 
da

ily
 i.

v 
in

je
ct

io
ns

 o
f P

BS
 

(c
on

tr
ol

) (
n 

=
 3

), 
fre

e 
S3

I-1
75

7 
(n

 =
 3

), 
or

 S
3I

-1
75

7 
en

ca
p-

su
la

te
d 

in
 P

EO
11

4-
b-

PB
C

L2
0 

m
ic

el
le

s 
(n

 =
 3

) w
ith

 a
 d

os
e 

of
 1

 m
g/

kg
 fo

r 7
 d

ay
s.

[2
05

, 2
06

]

ST
A

-2
1 

(S
M

)
D

U
14

5 
(1

2.
2 

μM
)

N
A

[2
07

]

LL
L-

3 
(S

M
)

G
lio

bl
as

to
m

a 
ce

ll 
U

87
, U

25
1,

 U
37

3 
(le

ss
 th

an
 3

0 
μM

)
U

87
 in

tr
ac

ra
ni

al
 tu

m
or

-b
re

ar
in

g 
at

hy
m

ic
 n

ud
e 

m
ic

e 
(n

u/
nu

), 
i.v

 in
je

ct
io

n 
of

 5
0 

m
g 

kg
 −

 1
 o

f L
LL

-3
 a

dm
in

is
te

re
d 

st
er

eo
ta

xi
ca

lly
.

[2
08

]

LL
L-

12
 (S

M
)

H
CC

 c
el

ls
, S

N
U

38
7 

(0
.8

4 
±

 0
.2

3 
μM

), 
SN

U
39

8 
(0

.9
6 

±
 0

.1
8 

μM
), 

SN
U

44
9 

(4
.3

8 
±

 1
.2

5 
μM

), 
an

d 
H

ep
3B

 
(2

.3
9 

±
 0

.6
8 

μM
).

SN
U

39
8 

tu
m

or
-b

ea
rin

g 
at

hy
m

ic
 n

ud
e 

m
ic

e,
 5

 m
g/

kg
, i

.p
 

in
je

ct
io

n 
Q

D
 fo

r o
ne

 m
on

th
.

[2
09

]

LY
5 

(S
M

)
1.

63
7 

to
 3

.3
47

 μ
m

ol
/L

 in
 li

ve
r c

an
ce

r c
el

ls
, 1

.2
35

 
to

 1
.6

90
 μ

m
ol

/L
 in

 c
ol

on
 c

an
ce

r c
el

ls
Co

lo
n 

ca
nc

er
 c

el
l H

C
T1

16
, Q

D
 i.

p 
do

sa
ge

s 
of

 5
 m

g/
kg

 
of

 L
Y5

 o
r v

eh
ic

le
 c

on
tr

ol
 fo

r 1
1 

da
ys

.
[2

10
]

SP
I (

Pe
pt

id
e)

M
D

A
-M

B-
23

1,
 M

D
A

-M
B-

43
5)

, C
ol

o-
35

7,
 D

U
14

5,
 A

54
9,

 
le

ss
 th

an
 8

0 
μM

.
N

A
[2

11
]

PY
*L

KT
K 

(P
ep

tid
e)

N
IH

 3
 T3

/v
Sr

c 
co

lo
ny

 (m
or

e 
th

an
 5

00
 μ

M
)

N
A

[2
12

]

IS
S6

10
 (P

M
)

N
IH

 3
 T3

/v
Sr

c 
co

lo
ny

 (m
or

e 
th

an
 1

00
0 

μM
)

N
A

[2
12

]

C
J-

13
83

 (P
M

)
M

D
A

-M
B-

23
1 

(1
1.

2 
μM

), 
M

D
A

-M
B-

46
8 

(3
.6

 μ
M

).
N

A
[2

13
]

PM
-7

3G
 (P

M
)

M
D

A
-M

B-
46

8,
 A

54
9,

 m
or

e 
th

an
 3

0 
μM

.
O

rt
ho

to
pi

c 
M

D
A

-M
B-

46
8 

br
ea

st
 tu

m
or

 x
en

og
ra

ft
s, 

in
tr

at
um

or
al

ly
 (i

.t)
 w

ith
 1

00
 μ

l o
f P

M
-7

3G
, f

or
m

ul
at

ed
 

in
 2

0%
 h

yd
ro

xy
pr

op
yl

-β
-c

yc
lo

de
xt

rin
 (T

ra
pp

so
l) 

in
 P

BS
 

to
 fa

ci
lit

at
e 

so
lu

bi
lit

y,
 2

0 
da

ys
.

[2
14

, 2
15

]



Page 15 of 29Hu et al. J Exp Clin Cancer Res           (2024) 43:23 	

Ta
bl

e 
2 

(c
on

tin
ue

d)

Ty
pe

D
ru

g 
na

m
es

Ce
ll-

ba
se

d 
effi

ca
cy

(IC
50

/E
C5

0/
G

I5
0)

A
ni

m
al

 m
od

el
s

(T
yp

es
, a

dm
in

is
tr

at
io

n)
Re

f

T4
02

14
(S

TA
T3

-G
-Q

ua
rt

et
)

PC
3,

 5
 μ

M
.

M
D

A
-M

D
-4

68
 o

r P
C

-3
 tu

m
or

 b
ea

rin
g 

at
hy

m
ic

 n
ud

e 
m

ic
e 

Ba
lb

/n
u/

nu
, T

40
21

4 
(5

.0
 m

g/
kg

) p
lu

s 
po

ly
et

hy
l-

en
ei

m
in

e 
(2

.5
 m

g/
kg

), 
ta

il-
ve

in
 in

je
ct

io
n,

 B
ID

.

[2
16

]

T4
02

31
(S

TA
T3

-G
-Q

ua
rt

et
)

PC
3,

 4
9 

μM
M

D
A

-M
D

-4
68

 o
r P

C
-3

 tu
m

or
 b

ea
rin

g 
at

hy
m

ic
 n

ud
e 

m
ic

e 
Ba

lb
/n

u/
nu

, T
40

23
1 

(5
.0

 m
g/

kg
) p

lu
s 

po
ly

et
hy

l-
en

ei
m

in
e 

(2
.5

 m
g/

kg
), 

ta
il-

ve
in

 in
je

ct
io

n,
 B

ID
.

[2
16

]

O
th

er
 m

od
es

ST
AT

3-
IN

-1
 (S

M
)

IC
50

 o
f 1

.8
2 

μM
 a

nd
 2

.1
4 

μM
 in

 H
T2

9 
an

d 
M

D
A

-M
B 

23
1 

ce
lls

, r
es

pe
ct

iv
el

y
O

ra
lly

, 4
 T1

 m
ou

se
 x

en
og

ra
ft

 1
0 

m
g/

kg
, 2

0 
m

g/
kg

.
[2

17
]

Cy
cl

ic
 S

TA
T3

 d
ec

oy
 (D

ec
oy

O
lig

od
eo

xy
nu

cl
eo

tid
e)

IC
50

 o
f N

SC
LC

 is
 a

pp
ro

xi
m

at
el

y 
0.

3 
μM

, t
he

 n
or

m
al

 lu
ng

 
fib

ro
bl

as
ts

 c
el

l i
s 

30
0 

μM
.

N
SC

LC
 x

en
og

ra
ft

, i
.v

 in
je

ct
io

n,
 Q

D
, 5

 m
g/

kg
/d

.
[2

18
]

C
TL

A
4a

pt
-S

TA
T3

(A
pt

am
er

)
N

A
Ka

rp
as

29
9 

T 
ce

ll 
ly

m
ph

om
a 

en
gr

af
te

d 
in

to
 a

th
ym

ic
 

nu
de

 m
ic

e,
 7

82
.5

 p
m

ol
/d

os
e/

m
ou

se
, i

.v
 B

ID
[2

19
]

In
di

re
ct

 in
hi

bi
to

rs
IL

-6
/IL

-6
R

G
p1

30
-F

c 
(A

b)
N

A
Co

lo
35

7 
(o

rt
ho

to
pi

c 
pa

nc
re

at
ic

 tu
m

or
s 

ce
ll)

 in
 S

C
ID

/b
g 

m
ic

e,
 0

.5
 m

g/
kg

, 2
.5

 m
g/

kg
, i

.p
. t

w
ic

e 
a 

w
ee

k.
[2

20
, 2

21
]

SR
C

In
di

ru
bi

n 
de

riv
at

iv
es

 E
80

4 
(S

M
)

N
A

N
A

[2
22

]

EG
FR

JN
D

32
29

 (S
M

)
Ba

F3
, 0

.5
1 

±
 0

.0
8 

μM
 (L

85
8R

/T
79

0M
/C

79
7S

), 
N

C
I-H

19
75

, 
0.

31
 ±

 0
.0

1 
μM

 (L
85

8R
/T

79
0M

), 
A

43
1,

 0
.2

7 
±

 0
.1

8 
μM

 (W
T)

.
N

A
[2

23
]

PD
15

30
35

 (S
M

)
H

um
an

 o
ra

l s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
a 

ce
lls

 K
B,

 
KB

/V
, H

ep
2,

 A
83

, T
ca

83
 a

nd
 T

ca
81

13
, 2

.5
7 

±
 0

.6
5,

 
0.

73
 ±

 0
.1

3,
 7

.7
1 

±
 0

.3
9,

 9
.3

5 
±

 0
.3

3,
 7

.1
4 

±
 0

.4
7 

an
d 

10
.0

2 
±

 0
.2

8 
μm

ol
/l,

 re
sp

ec
tiv

el
y.

KB
, K

B/
V 

be
ar

in
g 

BA
LB

/c
 n

ud
e 

m
ic

e,
 4

 o
r 8

 m
g/

kg
, Q

D
 

i.p
 in

je
ct

io
n.

[2
24

]

FG
FR

BG
J3

98
 (S

M
)

SK
O

V3
ip

1,
 le

ss
 th

an
 4

 μ
M

.
N

A
[2

25
]

JA
K1

/2
IN

C
B1

65
62

 (S
M

)
TF

-1
 (1

02
 ±

 3
6 

nM
), 

Bc
r-

A
bl

-t
ra

ns
du

ce
d 

TF
-1

 c
el

ls
 (m

or
e 

th
an

 4
00

0 
nM

).
N

A
-6

.T
u1

 x
en

og
ra

ft
s, 

or
al

ly
, 2

5 
m

g/
kg

, B
ID

, 4
2 

da
ys

.
[2

26
]

C
IM

O
 (S

M
)

H
ep

G
2,

 7
.3

 μ
M

.
H

uh
 7

-L
uc

 c
el

ls
 o

rt
ho

to
pi

ca
lly

 a
th

ym
ic

 n
u/

nu
 fe

m
al

e 
m

ic
e,

 2
 m

g/
kg

, 1
0 

m
g/

kg
, 5

 d
ay

s 
a 

w
ee

k 
i.p

.
[2

27
]



Page 16 of 29Hu et al. J Exp Clin Cancer Res           (2024) 43:23 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Ty
pe

D
ru

g 
na

m
es

Ce
ll-

ba
se

d 
effi

ca
cy

(IC
50

/E
C5

0/
G

I5
0)

A
ni

m
al

 m
od

el
s

(T
yp

es
, a

dm
in

is
tr

at
io

n)
Re

f

JA
K2

TG
10

12
09

(S
M

)
Ra

ji 
(8

.1
8 

μm
ol

/L
), 

Ra
m

os
 (7

.2
3 

μm
ol

/L
), 

pr
im

ar
y 

BL
 c

el
ls

 
(4

.5
7 

μm
ol

/L
)

Ra
m

os
-d

er
iv

ed
 tu

m
or

 x
en

og
ra

ft
s, 

or
al

ly
 g

av
ag

e,
 

10
0 

m
g/

kg
, 7

 c
on

se
cu

tiv
e 

da
ys

 (n
 =

 6
 p

er
 g

ro
up

).
[2

28
]

TG
10

13
48

(S
M

)
H

EL
 (3

05
 n

M
), 

Ba
/F

3J
A

K2
V6

17
F 

(2
70

 n
M

)
N

A
[2

29
]

ZT
55

 (S
M

)
M

C
F-

7,
 B

T5
49

, K
56

2,
 K

C
L-

22
, U

26
6,

 H
EL

, T
F-

1,
 c

el
ls

 
(1

8.
05

—
88

.3
1 

μM
)

Ju
rk

at
, R

aj
i, 

N
B4

, a
nd

 M
ol

t-
4 

(m
or

e 
th

an
 1

00
 μ

M
).

H
EL

 x
en

og
ra

ft
 tu

m
or

s, 
at

hy
m

ic
 B

A
LB

/c
 n

ud
e 

m
ic

e,
 

10
0 

m
g/

kg
 b

od
y 

w
ei

gh
t, 

or
al

ly
 Q

D
 fo

r 1
2 

su
cc

es
si

ve
 

da
ys

.

[2
30

]

Co
m

po
un

d 
9#

(S
M

)
B1

6F
10

 a
nd

 4
 T1

, l
itt

le
 e

ffe
ct

.
Tu

m
or

-b
ea

rin
g 

m
ic

e,
 i.

t i
nj

ec
tio

n,
 2

0 
m

g/
kg

, 4
0 

m
g/

kg
.

[2
31

]

BM
S-

91
15

43
(S

M
)

SE
T2

, A
54

9,
 M

D
A

-M
B-

23
1,

 M
ia

Pa
Ca

-2
, 0

.0
6—

4.
7 

μM
BA

LB
/c

 m
ic

e 
w

er
e 

im
m

un
iz

ed
 w

ith
 K

LH
 a

nt
ig

en
 fo

l-
lo

w
ed

 b
y 

or
al

 a
dm

in
is

tr
at

io
n 

of
 B

M
S-

91
15

43
 fo

r 1
4 

da
ys

 
at

 3
, 1

0 
or

 3
0 

m
g/

kg
 Q

D
.

[2
32

]

TY
K2

C
irs

ili
ol

 (S
M

)
N

A
ES

CC
 p

at
ie

nt
-d

er
iv

ed
 x

en
og

ra
ft

, S
C

ID
 ic

e,
 g

av
ag

e 
Q

D
, 

10
 m

g/
kg

 a
nd

 5
0 

m
g/

kg
.

[2
33

]

N
D

I-0
31

30
1 

(S
M

)
D

U
.5

28
, K

O
PT

-K
1,

 H
PB

-A
LL

, S
KW

-3
, l

es
s 

th
an

 1
0 

μm
ol

/l
KO

PT
-K

1 
ce

lls
 e

ng
ra

ft
ed

 in
to

 N
SG

 m
ic

e,
 1

00
 m

g/
kg

 B
ID

 
fo

r 2
9 

da
ys

.
[2

34
]

SH
P1

SC
-5

9 
(S

M
)

N
A

6 
H

uh
-7

 c
el

ls
 b

ea
rin

g 
m

al
e 

N
C

r a
th

ym
ic

 n
ud

e 
m

ic
e,

 
10

 m
g/

kg
/d

ay
, o

ra
lly

, Q
D

.
[2

35
]

SC
-7

8 
(S

M
)

H
C

T-
11

6 
(4

.2
 ±

 0
.4

), 
H

T-
29

 (4
.1

 ±
 0

.3
)

N
A

[2
36

]

SC
-4

9 
(S

M
)

N
A

PL
C

5 
(H

CC
) b

ea
rin

g 
N

C
r a

th
ym

ic
 n

ud
e 

m
ic

e,
 5

 m
g/

kg
 

or
al

ly
 Q

D
.

[2
37

]

PP
2A

Ca
ly

cu
lin

 A
 (S

M
)

N
A

N
A

[2
38

]

SM
 S

m
al

l m
ol

ec
ul

e,
 A

b 
A

nt
ib

od
y,

 P
M

 P
ep

tid
om

im
et

ic
, I

C5
0 

H
al

f-m
ax

im
al

 in
hi

bi
to

ry
 c

on
ce

nt
ra

tio
n,

 E
C5

0 
H

al
f m

ax
im

al
 e

ffe
ct

iv
e 

co
nc

en
tr

at
io

n,
 G

I5
0 

G
ro

w
th

 in
hi

bi
tio

n 
by

 5
0%

, i
.p

 In
tr

ap
er

ito
ne

al
 in

je
ct

io
n,

 i.
v 

In
tr

av
en

ou
s, 

i.t
 

In
tr

at
um

or
al

ly
, B

ID
 T

w
ic

e 
a 

da
y,

 Q
D

 O
nc

e 
a 

da
y,

 N
A 

N
ot

 a
va

ila
bl

e



Page 17 of 29Hu et al. J Exp Clin Cancer Res           (2024) 43:23 	

Table 3  Inhibitors of STAT3 in clinical development

Type Drug names Phase of trial Status Clinical Trial ID Patients Ref

Direct inhibitors
SH2 domain OPB-51602 (Small molecule) I Terminated NCT02​058017 Nasopharyngeal carcinoma (n = 9) NA

I Completed NCT01​423903 Advanced cancer (n = 45) NA

I Completed NCT01​344876 Hematological malignancies 
(n = 20)

[239]

I Completed NCT01​184807 Malignant solid tumor (n = 51) [240]

OPB-31121 (Small molecule) I Completed NCT00​955812 Advanced solid tumors (n = 30) [241]

I Unkonwn NCT00​657176 Advanced solid tumors (n = 25) [242]

C188–9 (Small molecule) I Recruiting NCT03​195699 BC, HNSCC, NSCLC, CRC, 
melanoma, GAC, advanced cancer 
(n = 60)

NA

DNA-binding domain BBI-608 (Napabucasin, small 
molecule)

I Completed NCT01​775423 Advanced malignancies (n = 87) NA

I Completed NCT03​525405 Healthy volunteers (n = 8) [243]

III Completed NCT01​830621 CRC (n = 282) [244]

I/II Completed NCT02​024607 GC (n = 495) NA

III Completed NCT02​993731 Pancreatic cancer (n = 1132) [245]

I/II Terminated NCT02​851004 Colorectal cancer (n = 55) [246]

Other modes AZD9150(Antisense oligonucleo-
tide)

I Completed NCT01​839604 HCC (n = 58) NA

I/II Completed NCT01​563302 Lymphoma (n = 64) [247]

I Completed NA Lymphoma, Lung Cancer (n = 25) [248]

STAT3 DECOY (Oligonucleotide) I Completed NCT00​696176 HNSCC (n = 32) NA

CpG-STAT3 siRNA I Recruiting NCT04​995536 Relapsed/Refractory B-Cell NHL 
(n = 18)

NA

Pyrimethamine (Small molecule) NA Completed NA CLL (n = 16) [249]

I/II Recruiting NCT01​066663 CLL, SLL (n = 26) NA

OPB-111077 (Small molecule) I Completed NCT01​711034 Advanced cancers (n = 145) NA

I Terminated NCT01​942083 HCC (n = 33) [250]

Celecoxib (Small molecule) III Terminated NCT00​087256 CRC (n = 18) NA

Indirect inhibitors
IL-6 Siltuximab (Anti-IL-6 mAb) I Completed NCT01​219010 SMM, IMM (n = 30) NA

I Completed NCT00​401765 Prostate cancer (n = 40) NA

I/II Completed NCT00​265135 Metastatic RCC (n = 68) [251]

I/II Completed NCT00​841191 Solid tumors (n = 106) [252]

II Completed NCT00​402181 Multiple myeloma (n = 53) [253]

II Completed NCT00​433446 Prostate cancer (n = 62) [254]

II Terminated NCT00​385827 Prostate cancer (n = 106) [255]

IL-6R Tocilizumab (Anti-IL-6R mAb) I Terminated NCT02​336048 B-cell CLL (n = 38) NA

I Completed NCT03​135171 Brest cancer (n = 11) NA

I/II Completed NCT01​637532 Ovarian cancer (n = 21) [256]

SRC Saracatinib II Terminated NCT00​752206 Osteosarcoma (n = 38) [257]

II Completed NCT00​669019 Melanoma (n = 23) NA

KX2–391 II Completed NCT01​074138 Prostate cancer (n = 31) NA

SRC, ABL Bosutinib III Completed NCT02​130557 Leukemia, Myelogenous, Chronic, 
Breakpoint cluster region-abelson 
proto-oncogene (BCR-ABL) posi-
tive (n = 536)

[258]

Dasatinib II Completed NCT00​439270 Prostate cancer (n = 49) [259]

III Completed NCT00​744497 Prostate cancer (n = 1930) [260]

IV Completed NCT01​660906 Chronic Phase Chronic Myeloid 
Leukemia (n = 39)

[261]

https://clinicaltrials.gov/study/NCT02058017
https://clinicaltrials.gov/study/NCT01423903
https://clinicaltrials.gov/study/NCT01344876
https://clinicaltrials.gov/study/NCT01184807
https://clinicaltrials.gov/study/NCT00955812
https://clinicaltrials.gov/study/NCT00657176
https://clinicaltrials.gov/study/NCT03195699
https://clinicaltrials.gov/study/NCT01775423
https://clinicaltrials.gov/study/NCT03525405
https://clinicaltrials.gov/study/NCT01830621
https://clinicaltrials.gov/study/NCT02024607
https://clinicaltrials.gov/study/NCT02993731
https://clinicaltrials.gov/study/NCT02851004
https://clinicaltrials.gov/study/NCT01839604
https://clinicaltrials.gov/study/NCT01563302
https://clinicaltrials.gov/study/NCT00696176
https://clinicaltrials.gov/study/NCT04995536
https://clinicaltrials.gov/study/NCT01066663
https://clinicaltrials.gov/study/NCT01711034
https://clinicaltrials.gov/study/NCT01942083
https://clinicaltrials.gov/study/NCT00087256
https://clinicaltrials.gov/study/NCT01219010
https://clinicaltrials.gov/study/NCT00401765
https://clinicaltrials.gov/study/NCT00265135
https://clinicaltrials.gov/study/NCT00841191
https://clinicaltrials.gov/study/NCT00402181
https://clinicaltrials.gov/study/NCT00433446
https://clinicaltrials.gov/study/NCT00385827
https://clinicaltrials.gov/study/NCT02336048
https://clinicaltrials.gov/study/NCT03135171
https://clinicaltrials.gov/study/NCT01637532
https://clinicaltrials.gov/study/NCT00752206
https://clinicaltrials.gov/study/NCT00669019
https://clinicaltrials.gov/study/NCT01074138
https://clinicaltrials.gov/study/NCT02130557
https://clinicaltrials.gov/study/NCT00439270
https://clinicaltrials.gov/study/NCT00744497
https://clinicaltrials.gov/study/NCT01660906
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promoting the subsequent biological activities. These 
features provide the druggable site although STAT3 has 
no enzymatic activity to target. Until now, numerous 
inhibitors selectively targeting SH2 have been exten-
sively studied; examples include but are not restricted to 
the following inhibitors (Table  2). We reviewed several 
representative inhibitors based on the category of small 
molecules, peptides and oligonucleotides. Small mol-
ecules such as proscillaridin A, periplogenin, MM-206, 
S3I-201, S3I-1757, stattic, STA-21 and its derivatives, 
N4, and SD-36, the peptides or peptidominetics such as 
PY*LKTK, ISS610, CJ-1383 and PM-73G, and the oligo-
nucleotides such as T40214 and T40231, which display 
a great potency in the pre-clinic studies (Table  2). Pro-
scillaridin A shows a greater inhibitory effect (50 nM) 
on STAT3 activation compared to S31–201 via inter-
acts with SH2 domain of STAT3 [278]. Some small mol-
ecules including OPB-51602, OPB-31121 and C188–9 
are undergoing clinical trials (Table  3). One example is 

periplogenin, a STAT3 inhibitor recently found by our 
group. It is a natural compound derived from Strepto-
caulon juventas, with potent anti-tumor effects in vitro 
and in vivo [33]. SD-36 is a potent and selective degrader 
of STAT3 based on an emerging proteolysis targeting 
chimera (PROTAC) technology. Excitingly, pharmacoki-
netics and pharmacodynamic analysis demonstrated 
that SD-36 is well tolerated in immune-competent mice 
and achieves a long-lasting regression in mice with sin-
gle i.v. doses of 25 mg/kg, 50 mg/kg and 100 mg/kg [201]. 
C188–9 (TTI-101) is a small molecule probe, targeting 
the phosphotyrosine peptide binding site (IC50 = 7.5–
20 μΜ, Ki = 37.3 nM) in the SH2 domain [37]. Cur-
rently, a dose-escalation phase I study of oral C188–9 
is being evaluated in patients with advanced cancer to 
evaluate the safety, maximum tolerated dose (MTD), 
pharmacokinetics, and preliminary antitumor activity 
(NCT03195699). Accordingly, C188–9 is a promising 
oral drug for clinical application.

Table 3  (continued)

Type Drug names Phase of trial Status Clinical Trial ID Patients Ref

EGFR Lapatinib II Completed NCT00​105950 Neoplasms, breast (n = 126) [262]

Cetuximab II Completed NCT00​084318 Head and neck cancer (n = 238) NA

Panitumumab IV Recruiting NCT02​301962 CRC (n = 58) NA

FGFR Ponatinib II Recruiting NCT04​043676 CML (n = 40) NA

VEGFR Apatinib II Unknown NCT03​709953 Lung cancer (n = 33) NA

FGFR/VEGFR ODM 203 I/IIa Completed NCT02​264418 Advanced or metastatic solid 
tumors (n = 84)

[263]

TLR2, TLR4 OM-174 I Completed NCT01​800812 Solid tumors (n = 27) [264]

PDGFR Sorafenib IV Recruiting NCT02​733809 HCC (n = 40) NA

IGFR Figitumumab I Completed NA Solid tumors (n = 24) [265]

JAK1/2 AZD1480 (Antisense oligonucleo-
tide)

I Terminated NCT01​112397 Solid malignancies (n = 72) NA

I Terminated NCT01​219543 HCC, NSCLC (n = 47) NA

Ruxolitinib (Small molecule) II Completed NCT00​674479 AML, ALL, CML (n = 51) [266]

Momelotinib (Small molecule) I Terminated NCT02​258607 NSCLC (n = 21) [267]

III Terminated NCT02​101021 PDAC (n = 25) NA

INCB018424 I/II Completed NCT00​509899 Myelofibrosis (n = 153) [268]

JAK2 WP1066 (Small molecule) I Completed NCT01​904123 Brain tumors (n = 8) NA

TQ05105 (Small molecule) I Recruiting NCT04​339400 Myeloproliferative neoplasms 
(n = 50)

NA

Fedratinib (Small molecule) I Completed NCT01​836705 Neoplasm malignant (n = 60) NA

I Completed NCT01​437787 Myelofibrosis (n = 289) [269]

II Completed NCT01​523171 Myelofibrosis (n = 97) [270]

SB1518 (Small molecule) I/II Completed NCT00​719836 AML, CML, Myelofibrosis (n = 76) [271]

LY2784544 (Small molecule) II Active NCT01​594723 Myeloproliferative neoplasms 
(n = 110)

[272]

Lestaurtinib II Completed NCT00​494585 Leukemia, Myelofibrosis (N = 27) [273]

SHP1 SC-43 I Withdrawn NCT03​443622 Refractory solid tumor NA

BC Breast cancer, HNSCC Head and neck squamous cell carcinoma, NSCLC Non-small cell lung cancer, CRC​ Colorectal cancer, GAC​ Gastric adenocarcinoma, HCC 
Hepatocellular carcinoma, NHL Non-Hodgkin Lymphoma, CLL Chronic lymphocytic leukemia, SLL Small lymphocytic lymphoma, SMM Smoldering Multiple Myeloma, 
IMM Indolent Multiple Myeloma, RCC​ Renal cell cancer, CML Chronic myelogenous leukemia, PDAC Pancreatic Ductal Adenocarcinoma, AML Adult acute myeloid 
leukemia, NA Not available

https://clinicaltrials.gov/study/NCT00105950
https://clinicaltrials.gov/study/NCT00084318
https://clinicaltrials.gov/study/NCT02301962
https://clinicaltrials.gov/study/NCT04043676
https://clinicaltrials.gov/study/NCT03709953
https://clinicaltrials.gov/study/NCT02264418
https://clinicaltrials.gov/study/NCT01800812
https://clinicaltrials.gov/study/NCT02733809
https://clinicaltrials.gov/study/NCT01112397
https://clinicaltrials.gov/study/NCT01219543
https://clinicaltrials.gov/study/NCT00674479
https://clinicaltrials.gov/study/NCT02258607
https://clinicaltrials.gov/study/NCT02101021
https://clinicaltrials.gov/study/NCT00509899
https://clinicaltrials.gov/study/NCT01904123
https://clinicaltrials.gov/study/NCT04339400
https://clinicaltrials.gov/study/NCT01836705
https://clinicaltrials.gov/study/NCT01437787
https://clinicaltrials.gov/study/NCT01523171
https://clinicaltrials.gov/study/NCT00719836
https://clinicaltrials.gov/study/NCT01594723
https://clinicaltrials.gov/study/NCT00494585
https://clinicaltrials.gov/study/NCT03443622
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The underlying biology and mechanisms of inhibitors 
are not limited to specific binding to STAT3. New STAT3 
selective inhibitors acting via different modes have con-
tinually sprung up in this field. For example, STAT3-IN-1 
dual-inhibition of the acetylation and phosphorylation 
of STAT3, displays a potent tumor inhibitory effect in 
pre-clinical models [217]. Alantolactone, a sesquiter-
pene lactone component of Inula helenium, abrogates 
STAT3 activation by promoting STAT3 glutathionylation, 
leading to oxidative stress-dependent apoptosis in lung 
cancer [279]. Oligonucleotides-based inhibitors break 
the ‘undruggable’ limit in developing STAT3 inhibitor. 
AZD9150, the antisense oligonucleotides, which targets 
the 3′ untranslated region of the STAT3 gene, displays 
promising efficacy in the pre-clinic models and clinical 
trials [247]. CTLA4apt-STAT3, a CTLA4 aptamer that 
delivers STAT3 siRNA to tumor cells, CD8+ T cells and 
Treg cells, finally inducing activation of the antitumor 
immunity [219]. Pyrimethamine, which has been tested 
in early-phase clinical trials, shows a dual inhibitory of 
STAT3 activation combined with immune response [280]. 
Recently, more and more research has switched atten-
tion to the area of mtSTAT3. The OPB-51602 and the 
OPB-111077 (phase I) are mtSTAT3 inhibitors through 
inhibition of OXPHOS and increase ROS production of 
mitochondrial ETC and thus induce mitophagy and cell 
death [281, 282]. MDC-1112, another mtSTAT3 inhibi-
tor, inhibits the mitochondrial accumulation of mtSTAT3 
and thus leads to depolarized mitochondrial membrane 
potential and increased ROS production [283].

Indirect inhibitors
As mentioned above, the activation of STAT3 signaling is 
commonly regulated by ligands which interact with cog-
nate membrane receptors and thus activate STAT3; the 
membrane receptors and associated kinases including 
cytokine receptors, GPCRs, TLRs, RTKs, non-RTKs, ser-
ine/threonine kinases which directly or indirectly activate 
STAT3. The negative regulators such as SOCS1, SOCS3, 
PIAS and protein tyrosine phosphatases commonly lead 
to the disruption of STAT3 activation. Therefore, target-
ing these regulators has emerged as a prominent strat-
egy for developing the STAT3 indirect inhibitors. The 
detailed information is provided in Tables 2 and 3.

Siltuximab and tocilizumab, are two FDA-approved 
monoclonal antibodies targeting IL-6 and IL-6R, sepa-
rately. The antibody-based inhibitors generally show high 
affinity and specificity [252]. LY2784544 (Gandotinib), a 
potent, selective, small-molecule inhibitor of JAK2 and 
JAK2 V617F, is the most promising JAK2 inhibitor that 
would enter the phase III clinical trial [272]. Cirsiliol, a 
novel inhibitor of TYK2 recently reported by our group, 
interacts with TYK2 with a high affinity (KD = 0.8 μM). 

Moreover, orally with dose of 10 mg/kg, 50 mg/kg of 
cirsiliol displayed efficacious tumor inhibitory effect 
in ESCC PDX models [284]. SC-43, SC-59, SC-78, the 
potent and orally agonists of SHP-1, significantly aug-
ment SHP-1 activity and attenuate the phosphorylation 
of STAT3 [235, 236]. Moreover, SC-43 has been entered 
into clinical trial investigation (NCT03443622).

Combination therapy
Targeting STAT3 in combination with chemotherapy 
or radiotherapy
Compelling evidence demonstrates that STAT3 inhibitors 
enhance the efficacy of established therapeutic agents in 
both preclinical and clinical investigations. STAT3 decoy 
ODNs combined with irradiation and methotrexate show 
a better efficacy than singe irradiation or methotrex-
ate treatment in metastatic breast cancer cell line [285]. 
CpG-STAT3ASO, an antisense oligonucleotide combined 
with radiotherapy could activate the mature of human 
DCs, M1 polarization of macrophages and promoted 
CD8+ T cell recruitment, thereby suppressing UM-SCC1 
tumor growth [286]. Due to the excellent efficacy of BBI-
608, several early-phase clinical trials have been per-
formed to test the combination with paclitaxel in patients 
with platinum-resistant ovarian cancer, melanoma, 
bladder cancer, NSCLC, gastric adenocarcinomas, pan-
creatic adenocarcinoma, triple-negative breast cancer. 
Other phase III trials are also ongoing with napabucasin 
in combination with the 5-fluorouracil (5-FU), leucov-
orin, irinotecan (FOLFIRI) in patients with previously 
treated metastatic colorectal cancer (NCT02753127, 
NCT03522649).

Targeting STAT3 in combination with targeted therapy
Much evidence has shown that blockade of various RTKs 
contributes to the feedback loop of STAT3 activation, and 
thus leads to drug resistance and therapeutic failure [171, 
175]. Accordingly, simultaneously disrupting the STAT3 
signaling, and targeted therapy, would be more promis-
ing and effective than monotherapy in human cancers. 
Wen’s group also has shown that AZD1480 synergy with 
EGFR inhibitor (gefitinib) decreased human ovarian can-
cer tumor growth much more robustly than either agent 
alone in vitro and in vivo [287]. TG101348, a highly selec-
tive ATP-competitive JAK2 inhibitor, potentiated the 
antitumor effect of erlotinib in EGFR-mutant NSCLC 
[288]. Combination of trastuzumab and S31–201 sup-
pressed the growth of the trastuzumab-resistant HER2-
positive breast and gastric cancer tumor xenografts [289]. 
Consequently, parallel application of the STAT3 inhibi-
tors with FDA-approved RTKs targeted therapy provides 
a promising strategy for future clinic investigation.
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Targeting STAT3 in combination with immunotherapy
As discussed above, STAT3 participates in almost all 
aspects of immune escape and tolerance in TME. Con-
sequently, combination STAT3 inhibition with immune 
checkpoint inhibitor is a promising strategy to improve 
the clinical response in tumor patients. STX-0119, a 
STAT3 dimerization inhibitor, combined with nivolumab 
(anti-PD-1 antibody), shows more dramatic inhibitory 
effects on the tumor growth and tumor-infiltrating lym-
phocyte numbers than STX-0119 and nivolumab single 
treatment in PANC-1 pancreatic cancer cells xenograft 
[290]. Recently, one group found that patients with 
chemotherapy-refractory metastatic PDAC simultane-
ously treated with MEK inhibitor (Trametinib), STAT3 
inhibitor (Ruxolitinib), and PD-1 inhibitor (Nivolumab) 
not only had good tolerance, but also yielded signifi-
cant clinical benefit through enhancing the CD4+ and 
CD8+ T-cell recruitment and reducing the populations 
of immunosuppressive TAMs and MDSCs in the PDAC 
TME [291]. GPB730, another STAT3 inhibitor, com-
bined with anti-CTLA-4 treatment results in significant 
antitumoral activity and prolonged survival compared 
to GPB730 or anti-CTLA-4 individual treatment [292]. 
Huang et  al. recently reported that nivolumab in com-
bination with stattic enhances the efficacy and immune 
response of anti-PD-1 in the immunocompetence for 
melanoma cells xenograft model through boosting the 
expression of TIM-3 in CD8+ T cells and decreasing the 
immune-suppressive cytokines IL-10 and TGF-β produc-
tion in Treg cells [293]. STAT3 direct inhibitor BBI-608 
combined with different immunotherapeutic agents such 
as ipilimumab, pembrolizumab, and pembrolizumab is 
also indicated for clinical trials [294]. AZD9150 com-
bined with durvalumab (anti-PD-L1), other indirect 
inhibitors such dasatinib combined with ipilimumab 
(anti-CTLA-4), dasatinib combined with nivolumab, rux-
olitinib combined with pembrolizumab (anti-PD-1), and 
cetuximab combined with pembrolizumab are ongoing 
in the phase I/II clinical trials [18]. Due to the promising 
results of these pre-clinical models and early phase clinic 
trials, further development of combination STAT3 inhi-
bition with immunotherapy is urgently needed.

Furthermore, cancer vaccines are also a promising 
strategy for immunotherapy. They work more efficiently 
to deliver the antigens and easily have uptake by DCs and 
act with a desired immune response. SVMAV, is one non-
vaccine construct with one specific antigen with TLR7/8 
agonist to stattic. The combination therapy of SVMAV 
and anti-PD-1 antibody shows a synergistic inhibitory 
effect and prolongs the survival duration of melanoma-
bearing mice compared with anti-PD-1 single treatment 
in mice [295]. Similarly, CpG is a TLR9 agonist that trig-
gers TLR9+ cells such as DCs, macrophages and B cells 

induced antitumor immune response. CpG-STAT3 
siRNA, is a tumor vaccine that co-delivers CpG and 
STAT3 siRNA oligonucleotide, achieving a whole-body 
immune response and inhibiting the immune suppressive 
environment in TME [296].

Since STAT3 has well-described roles in myeloid cells 
and Treg in promoting the immunosuppressive effects 
and attenuating the antitumor effects of CD8+ cells. 
Chimeric antigen receptor T (CAR-T) therapy has been 
approved by FDA and shows encouraging antitumor 
effects on human hematologic malignancies. Therefore, 
STAT3 inhibition combined with CAR-T cell therapy 
has become a new and emerging therapy. Maciej’s group 
deletes STAT3 alleles in both CD4+ and CD8+ T cells 
prior to implantation, significantly inhibiting the growth 
of melanoma tumors in mice compared with STAT3+/+ 
CD8+ T cells [131]. They also tried to block STAT3 sign-
aling using the inhibitor sunitinib in conjunction with T 
cells prior to transfer, showing infiltration, expansion and 
stimulation of T cells came to with similar results. Fur-
thermore, tocilizumab, (STAT3 indirect inhibitor, anti-
IL-6 antibody) combines with anti-CD19 CAR-T, one 
phase I clinical trial to determine efficacy in the CART19 
associated cytokine release syndrome (NCT02906371).

Targeting STAT3 mediated metabolic reprogramming 
of cancer cells and immune cells
The strategies for targeting cancer cell metabolism often 
ignore the metabolism of non-cancerous mesenchymal 
cells and immune system cells which contribute to the 
tumor progression [297]. Thus, uncovering the mecha-
nism of metabolic reprogramming of cancer cells and 
tumor immune cells is a promising area to develop new 
methods to conquer the immunosuppression in can-
cer [298]. Recently, STAT3 has been reported to medi-
ate metabolic reprogramming of MDSCs to lipid uptake 
and FAO in TME. Pharmacological inhibition of FAO 
attenuates the activity of MDSCs and tumor growth 
[298]. In addition, the metabolic reprogramming to lipid 
metabolism and the contribution of OXPHOS to the 
activation of M2 macrophages [298] is also regulated by 
STAT3 through another mechanism mentioned in this 
review. Based on these discussions, combination target-
ing the Warburg effects, fatty acid oxidation, and amino 
acid metabolism regulated by STAT3 with targeting 
the enzymes involved in metabolic reprogramming in 
immune cells may have therapeutic potential in tumor 
patients.

Perspectives and future directions
The unambiguous roles of STAT3 in tumor prolifera-
tion, metastasis, angiogenesis, immunosuppression, 
metabolism reprogramming, drug resistance, CSCs and 
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exosome have been demonstrated by most authorita-
tive assessments. Fascinatingly, despite its importance in 
embryonic development, STAT3 is dispensable in normal 
cells and tissues with cumulative evidence [299]. These 
features make STAT3 a promising target in cancer treat-
ment. Many advances and major endeavors in the field 
of STAT3 inhibitors from “undruggable” to “druggable” 
have been made in the past few decades. However, the 
overall success rate of all drugs entering clinical trials is 
just 10.4% [300]. More frustrating, no STAT3 targeting 
drugs have successfully passed the late phase clinical tri-
als. Therefore, the unpredictable complexity of develop-
ing STAT3 inhibitors still needs further developments 
and progress.

The reasons for the STAT3 inhibitors’ not having 
entered the clinical trials or have failed in the clini-
cal trials were primarily due to the irreversible side 
effects or lower efficacy. Although the oligonucleotide-
based STAT3 inhibitors have high affinity and specific-
ity to STAT3, low cell penetrance and rapid degradation 
restrict the efficiency of the drug delivery to the tumors. 
Peptide-based STAT3 inhibitors, also have the common 
challenges including instability, low delivery efficiency, 
and the unfavorable pharmacodynamics. Small molecule 
inhibitors of STAT3 commonly face a low overall rate of 
entering the clinical practice. The vast majority of small 
molecules and natural compounds have outstanding 
inhibitory activities in vitro but lower effects or even con-
tradictory results in vivo. Moreover, poor solubility, bioa-
vailability and high toxicity to normal cells also limit their 
efficacy in early clinical trials. Furthermore, despite the 
fact that advances and breakthroughs have been made 
in cancer immunotherapy, varying response rates among 
cancers, immune-related side effects and resistance yet to 
be solved.

Collectively, the poor cell penetrance, instability, 
lower bioavailability, side effects and bad targeted deliv-
ery efficiency are the common obstacles that need to be 
addressed. Researchers can attempt to design novel deliv-
ery systems of for these inhibitors, such as the nanoscale 
delivery system or co-delivery strategy. For example, 
the oligonucleotides-based inhibitors with small mol-
ecules, oligonucleotides-based inhibitors with peptides-
based inhibitors, or small molecules with peptides-based 
inhibitors coloaded on nanoparticles for targeting the 
tumor tissues through the enhanced bioavailability, per-
meability and retention effect may be helpful [301]. For 
the immunotherapy, more specific biomarkers, CAR-T 
cells, immune checkpoint molecules or other tech-
nologies such as nano-delivery systems and vaccines 
need to be identified. The development of inhibitors for 
next-generation immune checkpoint molecules such as 
LAG-3, TIGIT, B7-H3, V-domain Ig suppressor of T cell 

activation (VISTA), B and T cell lymphocyte attenuator 
(BTLA) and adenosine A2a receptor (A2aR) also provide 
new insights to drug discovery. Furthermore, the combi-
nation of low dose STAT3 inhibitors with chemotherapy, 
targeted therapy or immunotherapy may improve the 
efficacy and reduce the side effects of STAT3 inhibitors. 
This strategy has been discussed above. Anyhow, future 
research should take various approaches and more tech-
nologies in consideration to overcome these drawbacks, 
and new strategies of targeting STAT3 for therapeutic 
interventions are also being urgent.

Remarkably, on the one hand, the function of mtSTAT3 
creates new possibilities for cancer treatment. How-
ever, little is known about the transcriptional activity 
of mtSTAT3 to regulate mitochondrial DNA. Whether 
mtSTAT3 regulates other immune cells’ differentiation 
and effector function is not clear yet. Thus, the mecha-
nisms of mtSTAT3 mediation of tumorigenesis and can-
cer progression need further development. Moreover, 
based on the previous discussion, we propose that com-
bination therapy based on blocking the STAT3 transcrip-
tional activity with interfering the mtSTAT3 function 
may be synergistic in killing the cancer cells. On the other 
hand, targeting the STAT3-mediated alternative meta-
bolic reprogramming of cancer is also a promising field. 
However, there is still an increasing demand for devel-
oping more potent and selective metabolic inhibitors of 
targeting STAT3. Since STAT3 functions as the tumor 
hub in the TME consisting of stromal cells, immune 
cells, EMT cells, tumor cells and lymphatic vascular 
cells, targeting STAT3-mediated metabolic reprogram-
ming in cancer cells should take metabolic alterations 
that affect other components in TME into consideration. 
Consequently, the global landscape of STAT3-mediated 
metabolisms in tumor microenvironment is expected to 
overcome these challenges.
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