Skip to main content

Correction to: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells

The Original Article was published on 12 December 2018

Correction

In the publication of this article [1], there are errors in Figs. 3, 4 and 6. This has now been updated in the original article [1]. The authors declare that the correction does not change the results or conclusions of this paper.

Fig. 3
figure 1

MCF-7 ALDH1A1 regulates angiogenic factor output via retinoic acid signalling. a Angiogenic factors release evaluated by ELISA plate array in supernatants of MCF-7 treated with CM037 (1 μM) for 48 h. The experiment was performed 2 times in duplicate. b MCF-7 cells were exposed to CM037 at different concentrations (1 and 10 μM) for 18 h and western blot was carried out. β-Actin was used to normalize loading. c Cells were treated with CM037 (1 μM, 18 h) and VEGF levels were measured by ELISA assay in MCF-7 conditioned media. After 18 h supernatants were harvested and cells fixed, stained and counted. The number of counted cells was not significantly different. Data are reported as pg/ml. **p < 0.01 vs untreated cells. d RT-PCR analysis of VEGF in MCF-7 Scr, MCF-7 ALDH1A1KD and MCF-7 ALDH1A1+ cultured in medium with 1% FBS for 48 h. Data are reported as ΔCt (Ct gene of interest-Ct Housekeeping gene). ***p < 0.001 vs MCF-7 Scr. ###p < 0.001 vs MCF-7 ALDH1A1KD. e Western blot analysis of VEGF and HIF-1α in MCF-7 exposed or not to CoCl2 (100 μM, 72 h, 1% FBS). β-Actin was used as loading control. Gel shown is representative of three experiments with similar results. f Quantification of blots reported in e. *p < 0.05 vs MCF-7 Scr. **p < 0.01 vs MCF-7 Scr. ### p < 0.001 vs MCF-7 ALDH1A1KD. g Soluble VEGF was detected by ELISA in media conditioned by MCF-7 cells. Cells were seeded in 24-well plates at density 3 × 104 cells/well. After 48 h the supernatants were harvested and cells fixed, stained and counted. The number of counted cells was not significantly different. Data are reported as pg/ml. **p < 0.01 vs MCF-7 Scr. ##p < 0.01 vs MCF-7 ALDH1A1KD. h HIF-1α and VEGF expression evaluated by western blot in MCF-7 ALDH1A1KD cells exposed for 48 h (1 μM) to exogenous retinoic acid. i HIF-1α and VEGF expression in MCF-7 ALDH1A1+ treated with RAR antagonist (AGN193109) and RXR antagonist (UVI 3003) for 48 h (each at 1 μM). β-Actin was used as loading control. Gel shown is representative of three experiments with similar results. j VEGF and CD133 expression in MCF-7 transiently silenced for HIF-1α. β-Actin was used as loading control. Gel shown is representative of three experiments with similar results

Fig. 4
figure 2

MCF-7 ALDH1A1 regulates endothelial angiogenic features in VEGF dependent manner. a Viability of MCF-7 (Scr, ALDH1A1KD, ALDH1A1+) exposed to exogenous serum (10% FBS) or VEGF (2 and 20 ng/ml) at 72 h and evaluated by MTT assay. Data are reported as absorbance at 540 nm. ***p < 0.001 vs 0.1% FBS group. b MCF-7 were co-cultured with HUVEC for 48 h (1% FBS) in presence of Bevacizumab (100 ng/ml); HUVEC were fixed, stained and counted (5 fields random for well). Data are reported as number of HUVEC counted/well (n = 3). **p < 0.01 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ###p < 0.001 vs HUVEC co-cultured with MCF-7 ALDH1A1+ without Bevacizumab. §§p < 0.01 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ^^^p < 0.001 vs HUVEC co-cultured with MCF-7 ALDH1A1KD. c Tumor cells were co-cultured with MCF-7 for 18 h (1% FBS) in presence of Bevacizumab (100 ng/ml). Data are reported as % area of migration ratio (% of area at 18 h/area at 0 h). **p < 0.01 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. #p < 0.05 vs MCF-7 ALDH1A1+ without Bevacizumab. §p < 0.05 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ^^p < 0.01 vs HUVEC co-cultured with MCF-7 ALDH1A1KD. d Quantification of branching points of HUVEC seeded in Matrigel layer and co-cultured MCF-7 for 18 h (1% FBS). The results represent the media of 5 pictures. **p < 0.01 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ##p < 0.01 vs MCF-7 ALDH1A1+ without Bevacizumab. §§p < 0.01 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ^^^p < 0.001 vs HUVEC co-cultured with MCF-7 ALDH1A1KD. e Representative pictures of HUVEC network (4x magnification). f Tumor cells were seeded at the bottom of 12-well plates with HUVEC in transwells. The cells have been maintained in co-culture until HUVEC monolayer formation in presence or not of Bevacizumab (100 ng/ml) (n = 3). *p < 0.05 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ##p < 0.01 vs MCF-7 ALDH1A1+ without Bevacizumab. §p < 0.05 vs HUVEC co-cultured with MCF-7 Scr without Bevacizumab. ^^p < 0.01 vs HUVEC co-cultured with MCF-7 ALDH1A1KD. g HUVEC were co-cultured with MCF-7 until confluent in presence, or not of Bevacizumab (100 ng/ml). Immunofluorescent images for VE-Cadherin were obtained by confocal microscope (TCS SP5 Leica). Scale bars, 50 μm

Fig. 6
figure 3

ALDH1A1 influences tumor angiogenesis and VEGF production in vivo. a Evaluation of VEGF, HIF-1α and ALDH1A1 RNA in tumor samples. Frozen tumors were homogenized and RNA was extracted to perform RT-PCR analysis of VEGF, HIF-1α and ALDH1A1 mRNA. Data are reported as ΔCt (Ct gene of interest-Ct Housekeeping gene). Each bar is the mean of 6 different tumors. The experiment was repeated two times. *p < 0.05 vs Scr group. **p < 0.01 vs Scr group. #p < 0.05 vs ALDH1A1KD group. ###p < 0.001 vs ALDH1A1KD group. b Evaluation of VEGF and ALDH1A1 proteins in tumor samples. Tissues were harvested, homogenized and sonicated. Subsequently, proteins were extracted and western blot was performed. β-Actin was used as loading control. The experiment was repeated two times. c Evaluation of mRNA for CAIX (HIF-1α target gene) and stemness markers (SOX2, NANOG, OCT-4 and TWIST) in tumor samples. Each bar is the mean of 6 different tumors. The experiment was repeated two times. #p < 0.05 vs ALDH1A1KD group. ##p < 0.01 vs ALDH1A1KD group. ###p < 0.001 vs ALDH1A1KD group. d Evaluation of HIF-1α and stemness markers (CD133, KLF4 and SOX2) proteins in tumor samples. The experiment was repeated two times. e Quantification of blots reported in d. *p < 0.05 vs Scr group. #p < 0.05 vs ALDH1A1KD group. ##p < 0.01 vs ALDH1A1KD group. f Quantification of microvessel density by human CD31 staining (magnification 20x) was done counting 5 random fields for section, each slide having five sections. **p < 0.01 vs Scr group. ##p v 0.01 vs ALDH1A1+ group. g Representative images of immunostaining for CD31 (red) and DAPI (blue) in tumor sections from Scr (left), ALDH1A1KD (center) or ALDH1A1+ (right) mice. Pictures report different vessel densities in tumors. Magnification 20x. Scale bar, 50 μm. h Representative images of double-immunostaining for CD31 (red) and NG2 (green) in tumor sections from Scr (left), ALDH1A1KD (center) or ALDH1A1+ (right) mice. DAPI staining is blue. Magnification 40x. Scale bars, 50 μm

The revised Fig. 3 is given hereafter which includes 3d, 3e, 3f, 3g, 3h, 3i and 3j:

The revised Fig. 4 is given hereafter which includes 4f and 4 g:

The revised Fig. 6 is given hereafter which includes 6d, 6e, 6f, 6g and 6h:

Reference

  1. Ciccone V, Terzuoli E, Donnini S, et al. Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 2018;37(311). https://doi.org/10.1186/s13046-018-0975-0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucia Morbidelli or Marina Ziche.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccone, V., Terzuoli, E., Donnini, S. et al. Correction to: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res 38, 45 (2019). https://doi.org/10.1186/s13046-019-1045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13046-019-1045-y