Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol. 2005;67:719–58.
Article
CAS
PubMed
Google Scholar
Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium- dependent chloride conductance. Nature. 2008;455(7217):1210–5.
Article
CAS
PubMed
Google Scholar
Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134(6):1019–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.
Article
CAS
PubMed
Google Scholar
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, et al. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer. 2017;16(1):152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol. 2005;205(3):129–37.
Article
CAS
PubMed
Google Scholar
Kunzelmann K. Ion channels and cancer. J Membr Biol. 2005;205(3):159–73.
Article
CAS
PubMed
Google Scholar
Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol. 2008;32(2):210–8.
Article
PubMed
Google Scholar
Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, et al. Enhanced Expression of ANO1 in Head and Neck Squamous Cell Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE. 2012;7(8): e43265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012;72(13):3270–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel). 2019;11(3):382.
Article
CAS
Google Scholar
Kunzelmann K, Schreiber R, Kmit A, Jantarajit W, Martins JR, Faria D, et al. Expression and function of epithelial anoctamins. Exp Physiol. 2012;97(2):184–92.
Article
CAS
PubMed
Google Scholar
Qu Z, Yao W, Yao R, Liu X, Yu K, Hartzell C. The Ca (2+) -activated Cl(-) channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Med. 2014;3(3):453–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDermott JD, Bowles DW. Epidemiology of Head and Neck Squamous Cell Carcinomas: Impact on Staging and Prevention Strategies. Curr Treat Options Oncol. 2019;20(5):43.
Article
PubMed
Google Scholar
Koteluk O, Bielicka A, Lemańska Ż, Jóźwiak K, Klawiter W, Mackiewicz A, et al. The Landscape of Transmembrane Protein Family Members in Head and Neck Cancers: Their Biological Role and Diagnostic Utility. Cancers (Basel). 2021;13(19):4737.
Article
CAS
Google Scholar
Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.
Article
CAS
PubMed
Google Scholar
Döbrossy L. Epidemiology of head and neck cancer: Magnitude of the problem. Cancer Metastasis Rev. 2005;24(1):9–17.
Article
PubMed
Google Scholar
Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefèbvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):1945–52.
Article
CAS
PubMed
Google Scholar
Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937–44.
Article
PubMed
Google Scholar
Marur S, Forastiere AA. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin Proc. 2016;91(3):386–96.
Article
PubMed
Google Scholar
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, et al. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. Cell Death Dis. 2019;10(8):540.
Article
PubMed
PubMed Central
Google Scholar
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, et al. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol. 2019;234(6):7856–73.
Article
CAS
PubMed
Google Scholar
Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.
Article
PubMed
PubMed Central
Google Scholar
Fleming JC, Woo J, Moutasim K, Mellone M, Frampton SJ, Mead A, et al. HPV, tumour metabolism and novel target identification in head and neck squamous cell carcinoma. Br J Cancer. 2019;120(3):356–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh JE, Kim JO, Shin JY, Zhang XH, Won HS, Chun SH, et al. Molecular genetic characterization of p53 mutated oropharyngeal squamous cell carcinoma cells transformed with human papillomavirus E6 and E7 oncogenes. Int J Oncol. 2013;43(2):383–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lechner M, Fenton TR. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer-Understanding the Basis of a Rapidly Evolving Disease. Adv Genet. 2016;93:1–56.
Article
CAS
PubMed
Google Scholar
Luo X, Donnelly CR, Gong W, Heath BR, Hao Y, Donnelly LA, et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J Clin Investig. 2020;130(4):1635–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robé A, et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer. 2010;103(5):715–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi ZZ, Shang L, Jiang YY, Hao JJ, Zhang Y, Zhang TT, et al. Consistent and differential genetic aberrations between esophageal dysplasia and squamous cell carcinoma detected by array comparative genomic hybridization. Clin Cancer Res. 2013;19(21):5867–78.
Article
CAS
PubMed
Google Scholar
Bae JS, Park JY, Park SH, Ha SH, An AR, Noh SJ, et al. Expression of ANO1/DOG1 is associated with shorter survival and progression of breast carcinomas. Oncotarget. 2017;9(1):607–21.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Yao F, Luo S, Ma K, Liu M, Bai L, et al. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett. 2019;455:48–59.
Article
CAS
PubMed
Google Scholar
Wu H, Guan S, Sun M, Yu Z, Zhao L, He M, et al. Ano1/TMEM16A overexpression is associated with good prognosis in PR-positive or HER2- negative breast cancer patients following Tamoxifen treatment. PLoS ONE. 2015;10(5): e0126128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Yang Q, Huo S, Du Z, Wu F, Zhao H, et al. Expression of TMEM16A in Colorectal Cancer and Its Correlation With Clinical and Pathological Parameters. Front Oncol. 2021;11: 652262.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Cao QH, Lu DJ, Luo B, Lu XF, Luo RC, et al. TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF-beta signaling. Oncotarget. 2015;6(13):11585–99.
Article
PubMed
PubMed Central
Google Scholar
Liu W, Lu M, Liu B, Huang Y, Wang K. Inhibition of Ca (2+)- activated Cl(−) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 2012;326(1):41–51.
Article
CAS
PubMed
Google Scholar
Atala A. Re: Inhibition of Ca2+-activated Cl- channel ANO1/ TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. J Urol. 2013;189(6):2393.
Article
PubMed
Google Scholar
Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110(11):E1026–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bill A, Popa MO, van Diepen MT, Gutierrez A, Lilley S, Velkova M, et al. Variomics screen identifies the re-entrant loop of the calcium-activated chloride channel ANO1 that facilitates channel activation. J Biol Chem. 2015;290(2):889–903.
Article
CAS
PubMed
Google Scholar
Bill A, Gaither LA. The Mechanistic Role of the Calcium-Activated Chloride Channel ANO1 in Tumor Growth and Signaling. Adv Exp Med Biol. 2017;966:1–14.
Article
CAS
PubMed
Google Scholar
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, et al. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS ONE. 2014;9(12): e115443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Huo S, Sui Y, Du Z, Zhao H, Liu Y, et al. Mutation status and immunohistochemical correlation of KRAS, NRAS, and BRAF in 260 Chinese colorectal and gastric cancers. Front Oncol. 2018;8:487.
Article
PubMed
PubMed Central
Google Scholar
Deng I, Yang J, Chen H, Ma B, Pan K, Su C, et al. Knockdown of TMeM16a suppressed MaPK and inhibited cell proliferation and migration in hepatocellular carcinoma. Onco Targets Ther. 2016;9:325–33.
CAS
PubMed
PubMed Central
Google Scholar
Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, et al. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul. 2015;57:75–101.
Article
CAS
PubMed
Google Scholar
Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M, Candido S, et al. Deregulation of the EGFR/ PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget. 2014;5(13):4603–50.
Article
PubMed
PubMed Central
Google Scholar
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, et al. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 2015;6(11):9173–88.
Article
PubMed
PubMed Central
Google Scholar
Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF, et al. STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC. J Dent Res. 2017;96(9):1027–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo S, Wang H, Bai L, Chen Y, Chen S, Gao K, et al. Activation of TMEM16A Ca 2+-activated Cl-channels by ROCK1/moesin promotes breast cancer metastasis. J Adv Res. 2021;33:253–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Cai Y, Shao W, Li F, Guan Z, Zhou Y, et al. MicroRNA144 suppresses aggressive phenotypes of tumor cells by targeting ANO1 in colorectal cancer. Oncol Rep. 2019;41(4):2361–70.
CAS
PubMed
Google Scholar
Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, et al. Down- regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1. (ANO1) in CRC cells. Cancer Genet. 2019;231–232:22–31.
Article
CAS
PubMed
Google Scholar
Mokutani Y, Uemura M, Munakata K, Okuzaki D, Haraguchi N, Takahashi H, et al. Down-regulation of microRNA-132 is associated with poor prognosis of colorectal cancer. Ann Surg Oncol. 2016;23(Suppl 5):599–608.
Article
PubMed
PubMed Central
Google Scholar
Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, et al. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J Exp Clin Cancer Res. 2017;36(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dulin NO. Calcium-activated chloride channel ANO1/TMEM16A: regulation of expression and signaling. Front Physiol. 2020;11: 590262.
Article
PubMed
PubMed Central
Google Scholar
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci. 2019;20(11):2767.
Article
CAS
PubMed Central
Google Scholar
Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25(1):76–84.
Article
CAS
PubMed
Google Scholar
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH, Moustakas A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front Cell Dev Biol. 2022;10: 849938.
Article
PubMed
PubMed Central
Google Scholar
Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21.
Article
CAS
PubMed
Google Scholar
Morikawa M, Koinuma D, Miyazono K, Heldin CH. Genome-wide Mechanisms of Smad Binding. Oncogene. 2013;32:1609–15.
Article
CAS
PubMed
Google Scholar
Tzavlaki K, Moustakas A. TGF-β Signaling Biomolecules. 2020;10:487.
Article
CAS
Google Scholar
Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA- dependent mechanism. Mol Biol Cell. 2001;12(1):27–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005;280(12):11448–57.
Article
CAS
PubMed
Google Scholar
Vyas A, Duvvuri U, Kiselyov K. Copper-dependent ATP7B upregulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem J. 2019;476(24):3705–19.
Article
CAS
PubMed
Google Scholar
Kulkarni S, Bill A, Godse NR, Khan NI, Kass JI, Steehler K, et al. TMEM16A/ANO1 suppression improves response to antibody-mediated targeted therapy of EGFR and HER2/ERBB2. Genes Chromosomes Cancer. 2017;56(6):460–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozols RF. Ovarian cancer: new clinical approaches. Cancer Treat Rev. 1991;18(Suppl A):77–83.
Article
PubMed
Google Scholar
Godse NR, Khan N, Yochum ZA, Gomez-Casal R, Kemp C, Shiwarski DJ, et al. TMEM16A/ANO1 Inhibits Apoptosis Via Downregulation of Bim Expression. Clin Cancer Res. 2017;23(23):7324–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berglund E, Akcakaya P, Berglund D, Karlsson F, Vukojevic V, Lee L, et al. Functional role of the Ca-activated Cl channel DOG1/TMEM16A in gastrointestinal stromal tumor cells. Exp Cell Res. 2014;326(2):315–25.
Article
CAS
PubMed
Google Scholar
Dixit R, Kemp C, Kulich S, Seethala R, Chiosea S, Ling S, et al. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV positive head and neck squamous cell carcinoma through promoter methylation. Sci Rep. 2015;5:16657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82.
Article
CAS
PubMed
Google Scholar
Wise-Draper TM, Wells SI. Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci. 2008;13:1003–17.
Article
CAS
PubMed
Google Scholar
Shin MK, Pitot HC, Lambert PF. Pocket proteins suppress head and neck cancer. Cancer Res. 2012;72(5):1280–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology. 2010;407(1):60–7.
Article
CAS
PubMed
Google Scholar
Strati K, Lambert PF. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res. 2007;67(24):11585–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devaraja K, Aggarwal S, Verma SS, Gupta SC. Clinico-pathological peculiarities of human papilloma virus driven head and neck squamous cell carcinoma: A comprehensive update. Life Sci. 2020;245: 117383.
Article
CAS
PubMed
Google Scholar
Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.
Article
CAS
Google Scholar
Nichols AC, Yoo J, Palma DA, Fung K, Franklin JH, Koropatnick J, et al. Frequent mutations in TP53 and CDKN2A found by next-generation sequencing of head and neck cancer cell lines. Arch Otolaryngol Head Neck Surg. 2012;138(8):732–9.
Article
PubMed
Google Scholar
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pectasides E, Rampias T, Sasaki C, Perisanidis C, Kouloulias V, Burtness B, et al. Markers of Epithelial to Mesenchymal Transition in Association With Survival in Head and Neck Squamous Cell Carcinoma (HNSCC). PLoS ONE. 2014;9(4): e94273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taberna M, Torres M, Alejo M, Mena M, Tous S, Marquez S, et al. The Use of HPV16-E5, EGFR, and pEGFR as Prognostic Biomarkers for Oropharyngeal Cancer Patients. Front Oncol. 2018;8:589.
Article
PubMed
PubMed Central
Google Scholar
He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, et al. The Hippo/YAP Pathway Interacts With EGFR Signaling and HPV Oncoproteins to Regulate Cervical Cancer Progression. EMBO Mol Med. 2015;7(11):1426–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu J, Hu F, Shao T, Guo Y, Dai Z, Nie H, et al. Blocking of EGFR Signaling Is a Latent Strategy for the Improvement of Prognosis of HPV-Induced Cancer. Front Oncol. 2021;27: 633794.
Article
Google Scholar
Cai H, Yan L, Liu N, Xu M, Cai H. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway. Biomed Pharmacother. 2020;123: 109790.
Article
CAS
PubMed
Google Scholar
Shiwarski DJ, Shao C, Bill A, Kim J, Xiao D, Bertrand CA, et al. To “Grow” or “Go”: TMEM16A expression as a switch between tumor growth and metastasis in SCCHN. Clin Cancer Res. 2014;20(17):4673–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roepman P, de Jager A, Groot Koerkamp MJA, Kummer JA, Slootweg PJ, Holstege FC. Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Res. 2006;66(23):11110–4.
Article
CAS
PubMed
Google Scholar
Sugahara K, Michikawa Y, Ishikawa K, Shoji Y, Iwakawa M, Shibahara T, et al. Combination effects of distinct cores in 11q13 amplification region on cervical lymph node metastasis of oral squamous cell carcinoma. Int J Oncol. 2011;39(4):761–9.
CAS
PubMed
Google Scholar
Takes RP, Rinaldo A, Silver CE, Haigentz M Jr, Woolgar JA, Triantafyllou A, et al. Distant metastases from head and neck squamous cell carcinoma. Part I Basic aspects Oral Oncol. 2012;48(9):775–9.
PubMed
Google Scholar
Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996;17(4):308–32.
CAS
PubMed
Google Scholar
Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M. VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging α4β1-Positive Osteoclast Progenitors. Cancer Cell. 2011;20(6):701–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu Z, Yao W, Yao R, Liu X, Yu K, Hartzell C. The Ca2+-activated Cl− channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Med. 2014;3(3):453–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, et al. TMEM16A Ca (2+)-activated Cl(-) channel inhibition ameliorates acute pancreatitis via the IP (3) R/Ca (2+)/NFκB/ IL-6 signaling pathway. J Adv Res. 2020;23:25–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bill A, Hall ML, Borawski J, Hodgson C, Jenkins J, Piechon P, et al. Small molecule-facilitated degradation of ANO1 protein: a new targeting approach for anticancer therapeutics. J Biol Chem. 2014;289:11029–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Chen Y, Shi S, Wang X, Zhang H, Zhan Y, et al. Arctigenin, a novel TMEM16A inhibitor for lung adenocarcinoma therapy. Pharmacol Res. 2020;155: 104721.
Article
CAS
PubMed
Google Scholar
Sui Y, Wu F, Lv J, Li H, Li X, Du Z, et al. Identification of the Novel TMEM16A Inhibitor Dehydroandrographolide and Its Anticancer Activity on SW620 Cells. PLoS ONE. 2015;10(12): e0144715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang T, Zhang Z, Fan Y, Zhang Y, Gao K, et al. Simvastatin inhibits oral squamous cell carcinoma by targeting TMEM16A Ca2+-activated chloride channel. J Cancer Res Clin Oncol. 2021;147:1699–711.
Article
CAS
PubMed
Google Scholar
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo Y, Ryu K, Park J, Jeon DK, Jo S, Lee HK, et al. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS ONE. 2017;12(3): e0174935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miner K, Labitzke K, Liu B, Elliot R, Wang P, Henckels K, et al. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front Pharmacol. 2019;10:51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM, Yeh TS. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem. 2009;106:682–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meurette O, Mehlen P. Notch Signaling in the Tumor Microenvironment. Cancer Cell. 2018;34:536–48.
Article
CAS
PubMed
Google Scholar
Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25:961–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–27.
Article
CAS
PubMed
Google Scholar
Ren X, Duan L, He Q, Zhang Z, Zhou Y, Wu D, et al. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med Chem Lett. 2010;1:454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 2011;71:4172–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LH, Xu M, Fu LQ, Chen XY, Yang F. The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear beta-catenin/c-Myc axis in OSCC. Sci Rep. 2018;8:12776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arend RC, Londono-Joshi AI, Gangrade A, Katre AA, Kurpad C, Li Y, Samant RS, et al. Niclosamide and its analogs are potent inhibitors of Wnt/beta-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget. 2016;7:86803–15.
Article
PubMed
PubMed Central
Google Scholar
Ahn SY, Yang JH, Kim NH, Lee K, Cha YH, Yun JS, et al. Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3. Oncotarget. 2017;8:31856–63.
Article
PubMed
PubMed Central
Google Scholar
Chen B, Wei W, Ma L, Yang B, Gill RM, Chua MS, et al. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle Signaling. Gastroenterology. 2017;152:2022–36.
Article
CAS
PubMed
Google Scholar
Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Bai X, Shi S, Deng Y, Kang X, An H. TMEM16A, a Homoharringtonine Receptor, as a Potential Endogenic Target for Lung Cancer Treatment. Int J Mol Sci. 2021;22(20):10930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan M, Zhang Q, Yuan X, Chen Y, Wu Y. Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms. J Exp Clin Cancer Res. 2019;38:308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LB, Wang DN, Wu LG, Cao J, Tian JH, Liu R, et al. Homoharringtonine inhibited breast cancer cells growth via miR-18a-3p/AKT/mTOR signaling pathway. Int J Biol Sci. 2021;17:995–1009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Zhang G, Zhao Z, Xiu R, Jia J, Chen P, et al. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy. Biochim Biophys Acta Mol Cell Res. 2021;1868(12): 119132.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhang G, Zhai W, Zhao Z, Wang S, Yi J. Inhibition of TMEM16A Ca2+-activated Cl- channels by avermectins is essential for their anticancer effects. Pharmacol Res. 2020;156: 104763.
Article
CAS
PubMed
Google Scholar
Zhang G, Zhu L, Xue Y, Zhao Z, Li H, Niu Z, et al. Benzophenanthridine alkaloids suppress lung adenocarcinoma by blocking TMEM16A Ca2+-activated Cl- channels. Pflugers Arch. 2020;472(10):1457–67.
Article
CAS
PubMed
Google Scholar
Shi S, Ma B, Sun F, Qu C, An H. Theaflavin binds to a druggable pocket of TMEM16A channel and inhibits lung adenocarcinoma cell viability. J Biol Chem. 2021;297(3): 101016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Bai X, Liu Y, Shi S, Wang X, Zhan Y, et al. Inhibition of TMEM16A by Natural Product Silibinin: Potential Lead Compounds for Treatment of Lung Adenocarcinoma. Front Pharmacol. 2021;12: 643489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi S, Ma B, Sun F, Qu C, Li G, Shi D, et al. Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem. 2022;298(3): 101731.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Chen Y, Pang C, Wang X, Shi S, Zhang H, et al. Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects. J Cell Physiol. 2019;234(6):8698–708.
Article
CAS
PubMed
Google Scholar
Bai X, Liu X, Li S, An H, Kang X, Guo S. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. J Agric Food Chem. 2022;70(12):3687–96.
Article
CAS
PubMed
Google Scholar
Seo Y, Lee HK, Park J, Jeon DK, Jo S, Jo M, et al. Ani9, A Novel Potent Small-Molecule ANO1 Inhibitor with Negligible Effect on ANO2. PLoS One. 2016;11(5):e0155771.
Oh SJ, Hwang SJ, Jung J, Yu K, Kim J, Choi JY, et al. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/Anoctamin-1. Mol Pharmacol. 2013;84:726e35.
Article
CAS
Google Scholar
Truong EC, Phuan PW, Reggi AL, Ferrera L, Galietta LJV, Levy SE, et al. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J Med Chem. 2017;60(11):4626–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2þ-activated Cl– channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 2010;24:4178e86.
Article
CAS
Google Scholar
Zhao Z, Xue Y, Zhang G, Jia J, Xiu R, Jia Y, et al. Identification of evodiamine and rutecarpine as novel TMEM16A inhibitors and their inhibitory effects on peristalsis in isolated Guinea-pig ileum. Eur J Pharmacol. 2021;908: 174340.
Article
CAS
PubMed
Google Scholar
Yimnual C, Satitsri S, Ningsih BNS, Rukachaisirikul V, Muanprasat C. A fungus-derived purpactin A as an inhibitor of TMEM16A chloride channels and mucin secretion in airway epithelial cells. Biomed Pharmacother. 2021;139: 111583.
Article
CAS
PubMed
Google Scholar
Wang H, Ma D, Zhu X, Liu P, Li S, Yu B, et al. Nimodipine inhibits intestinal and aortic smooth muscle contraction by regulating Ca 2+-activated Cl – channels. Toxicol Appl Pharmacol. 2021;421: 115543.
Article
CAS
PubMed
Google Scholar
Cho H, Yang YD, Lee J, Lee B, Kim T, Jang Y, et al. The calcium- activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature Neurosci. 2012;15(7):1015–21.
Article
CAS
PubMed
Google Scholar
Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol. 2000;1(2):151–5.
Article
CAS
PubMed
Google Scholar
Caudell JJ, Gillison ML, Maghami E, Spencer S, Pfister DG, Adkins D, et al. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw. 2022;20(3):224–34.
Article
PubMed
Google Scholar
Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine. 2021;148: 155709.
Article
CAS
PubMed
Google Scholar
Begg K, Tavassoli M. Inside the hypoxic tumour: reprogramming of the DDR and radioresistance. Cell Death Discov. 2020;18(6):77.
Article
CAS
Google Scholar
Sørensen BS, Horsman MR. Tumor Hypoxia: Impact on Radiation Therapy and Molecular Pathways. Front Oncol. 2020;10:562.
Article
PubMed
PubMed Central
Google Scholar
Blount A, Zhang S, Chestnut M, Hixon B, Skinner D, Sorscher EJ, Woodworth BA. Transepithelial Ion Transport Is Suppressed in Hypoxic Sinonasal Epithelium. Laryngoscope. 2011;121:1929–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393(10167):156–67.
Article
CAS
PubMed
Google Scholar
Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, Jr, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.
Article
CAS
PubMed
Google Scholar
Dos Santos LV, Abrahão CM, William WN Jr. Overcoming Resistance to Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinomas. Front Oncol. 2021;11: 596290.
Article
PubMed
PubMed Central
Google Scholar
Azuma K, Ota K, Kawahara A, Hoshino T, Nakanishi Y, Okamoto I. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected non-small cell lung cancer. Ann Oncol. 2014;25(10):1935–40.
Article
CAS
PubMed
Google Scholar
Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 2016;49(4):1360–8.
Article
CAS
PubMed
Google Scholar
Xu Y, Zhu G, Maroun CA, Wu IXY, Huang D, Seiwert TY, et al. Programmed Death-1/Programmed Death-Ligand 1-Axis Blockade in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Stratified by Human Papillomavirus Status: A Systematic Review and Meta-Analysis. Front Immunol. 2021;12: 645170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirianant L, Ousingsawat J, Tian Y, Schreiber R, Kunzelmann K. TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell Signal. 2014;26(12):2826–33.
Article
CAS
PubMed
Google Scholar
Finegersh A, Kulich S, Guo T, Favorov AV, Fertig EJ, Danilova LV, et al. DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma. Sci Rep. 2017;7(1):15173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol. 2020;11: 584626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin K, Cheng J, Yang T, Li Y, Zhu B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-kappaB. Biochem Biophys Res Commun. 2015;463(1–2):95–101.
Article
CAS
PubMed
Google Scholar
Guo R, Li Y, Wang Z, Bai H, Duan J, Wang S, et al. Hypoxia-inducible factor-1alpha and nuclear factor-kappaB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci. 2019;110(5):1665–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhola NE, Njatcha C, Hu L, Lee ED, Shiah JV, Kim MO, et al. PD-L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head Neck. 2021;43(11):3364–73.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhang S, Hou F, Zhang C, Gao J, Wang K. Inhibition of Ca 2+ -activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling. Int J Cancer. 2019;144(9):2215–26.
Article
CAS
PubMed
Google Scholar
Dhillion AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.
Article
CAS
Google Scholar
Almaça J, Tian Y, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, et al. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem. 2009;284(42):28571–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsurahara K, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Arita T, et al. ANO9 regulates PD-L2 expression and binding ability to PD-1 in gastric cancer. Cancer Sci. 2021;112(3):1026–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okuyama K, Suzuki K, Naruse T, Tsuchihashi H, Yanamoto S, Kaida A, et al. Prolonged cetuximab treatment promotes p27Kip1-mediated G1 arrest and autophagy in head and neck squamous cell carcinoma. Sci Rep. 2021;11(1):5259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conforti L. The ion channel network in T lymphocytes, a target for immunotherapy. Clin Immunol. 2012;142(2):105–6.
Article
CAS
PubMed
Google Scholar
Brooks JM, Menezes AN, Ibrahim M, Archer L, Lal N, Bagnall CJ, et al. Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer. Clin Cancer Res. 2019;25(17):5315–28.
Article
CAS
PubMed
Google Scholar
Zahnreich S, Gebrekidan S, Multhoff G, Vaupel P, Schmidberger H, Mayer A. Oxygen Deprivation Modulates EGFR and PD-L1 in Squamous Cell Carcinomas of the Head and Neck. Front Oncol. 2021;11: 623964.
Article
PubMed
PubMed Central
Google Scholar