Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32 PubMed PMID: 26808342. Epub 2016/01/26. eng.
Article
PubMed
Google Scholar
Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2006;12(4):410–6 PubMed PMID: 16532004.
Article
CAS
PubMed
Google Scholar
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. Hepatology. 2009;49(1):318–29 PubMed PMID: 19111019. Pubmed Central PMCID: 2726720.
Article
PubMed
Google Scholar
Zorn AM. Liver development. Cambridge: IOS Press; 2008.
Clotman F, Lemaigre FP. Control of hepatic differentiation by activin/TGFbeta signaling. Cell Cycle. 2006;5(2):168–71 PubMed PMID: 16357531.
Article
CAS
PubMed
Google Scholar
Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res. 2004;292(1):157–69 PubMed PMID: 14720515.
Article
CAS
PubMed
Google Scholar
Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, et al. Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16(2):121–36 PubMed PMID: 30451972.
Article
CAS
PubMed
Google Scholar
Chen J, Gingold JA, Su X. Immunomodulatory TGF-beta signaling in hepatocellular carcinoma. Trends Mol Med. 2019;25(11):1010–23 PubMed PMID: 31353124.
Article
CAS
PubMed
Google Scholar
Malfettone A, Soukupova J, Bertran E, Crosas-Molist E, Lastra R, Fernando J, et al. Transforming growth factor-beta-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Cancer Lett. 2017;392:39–50 PubMed PMID: 28161507.
Article
CAS
PubMed
Google Scholar
Liu M, Yan Q, Sun Y, Nam Y, Hu L, Loong JH, et al. A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proc Natl Acad Sci U S A. 2020;117(11):6103–13 PubMed PMID: 32123069. Pubmed Central PMCID: 7084088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodchenkov I, Babur O, Luna A, Aksoy BA, Wong JV, Fong D, et al. Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 2020;48(D1):D489–D97 PubMed PMID: 31647099. Pubmed Central PMCID: 7145667.
CAS
PubMed
Google Scholar
Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401(6750):279–82 PubMed PMID: 10499586.
Article
CAS
PubMed
Google Scholar
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, et al. Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85 PubMed PMID: 12464179.
Article
CAS
PubMed
Google Scholar
Hayashi M, Maeda S, Aburatani H, Kitamura K, Miyoshi H, Miyazono K, et al. Pitx2 prevents osteoblastic transdifferentiation of myoblasts by bone morphogenetic proteins. J Biol Chem. 2008;283(1):565–71 PubMed PMID: 17951577.
Article
CAS
PubMed
Google Scholar
Cox CJ, Espinoza HM, McWilliams B, Chappell K, Morton L, Hjalt TA, et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem. 2002;277(28):25001–10 PubMed PMID: 11948188.
Article
CAS
PubMed
Google Scholar
Arakawa H, Nakamura T, Zhadanov AB, Fidanza V, Yano T, Bullrich F, et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc Natl Acad Sci U S A. 1998;95(8):4573–8 PubMed PMID: 9539779. Pubmed Central PMCID: 22531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999;126(20):4643–51 PubMed PMID: 10498698.
Article
CAS
PubMed
Google Scholar
Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT. A functional variant associated with atrial fibrillation regulates PITX2c expression through TFAP2a. Am J Hum Genet. 2016;99(6):1281–91 PubMed PMID: 27866707. Pubmed Central PMCID: 5142106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harbeck N, Nimmrich I, Hartmann A, Ross JS, Cufer T, Grutzmann R, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26(31):5036–42 PubMed PMID: 18711169.
Article
CAS
PubMed
Google Scholar
Vela I, Morrissey C, Zhang X, Chen S, Corey E, Strutton GM, et al. PITX2 and non-canonical Wnt pathway interaction in metastatic prostate cancer. Clin Exp Metastasis. 2014;31(2):199–211 PubMed PMID: 24162257.
Article
CAS
PubMed
Google Scholar
Vinarskaja A, Schulz WA, Ingenwerth M, Hader C, Arsov C. Association of PITX2 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. Urol Oncol. 2013;31(5):622–7 PubMed PMID: 21803613.
Article
CAS
PubMed
Google Scholar
Hirose H, Ishii H, Mimori K, Tanaka F, Takemasa I, Mizushima T, et al. The significance of PITX2 overexpression in human colorectal cancer. Ann Surg Oncol. 2011;18(10):3005–12 PubMed PMID: 21479692.
Article
PubMed
Google Scholar
Huang Y, Guigon CJ, Fan J, Cheng SY, Zhu GZ. Pituitary homeobox 2 (PITX2) promotes thyroid carcinogenesis by activation of cyclin D2. Cell Cycle. 2010;9(7):1333–41 PubMed PMID: 20372070.
Article
CAS
PubMed
Google Scholar
Basu M, Roy SS. Wnt/beta-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem. 2013;288(6):4355–67 PubMed PMID: 23250740. Pubmed Central PMCID: 3567686.
Article
CAS
PubMed
Google Scholar
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS. Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-beta and Activin-a. Mol Cancer. 2015;14:162 PubMed PMID: 26298390. Pubmed Central PMCID: 4546816.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Wang J, Tsui YM, Shi C, Wang Y, Zhang X, et al. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-beta2. Nat Commun. 2021;12(1):1518 PubMed PMID: 33750796. Pubmed Central PMCID: 7943813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kojiro M. Pathology of early hepatocellular carcinoma: progression from early to advanced. Hepatogastroenterology. 1998;45(Suppl 3):1203–5 PubMed PMID: 9730375.
PubMed
Google Scholar
Yan Q, Zhang Y, Fang X, Liu B, Wong TL, Gong L, et al. PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ. 2021;28:1955–70 PubMed PMID: 33500560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30(1):155–67 PubMed PMID: 19144320. Pubmed Central PMCID: 2722509.
Article
PubMed
PubMed Central
Google Scholar
Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512 PubMed PMID: 24981363. Pubmed Central PMCID: 4234172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung TW, Patt YZ, Lau WY, Ho SK, Yu SC, Chan AT, et al. Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res. 1999;5(7):1676–81 PubMed PMID: 10430068. Epub 1999/08/03. eng.
CAS
PubMed
Google Scholar
Goyal L, Zheng H, Abrams TA, Miksad R, Bullock AJ, Allen JN, et al. A phase II and biomarker study of Sorafenib combined with modified FOLFOX in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2019;25(1):80–9 PubMed PMID: 30190369. Pubmed Central PMCID: 6320284.
Article
CAS
PubMed
Google Scholar
Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen CY, et al. The Wnt/beta-catenin-->Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell. 2003;12(5):1201–11 PubMed PMID: 14636578.
Article
CAS
PubMed
Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W60 PubMed PMID: 31114875. Pubmed Central PMCID: 6602440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006;6(8):593–602 PubMed PMID: 16862190.
Article
CAS
PubMed
Google Scholar
Johnston RN, Pai SB, Pai RB. The origin of the cancer cell: oncogeny reverses phylogeny. Biochem Cell Biol. 1992;70(10–11):831–4 PubMed PMID: 1297348.
Article
CAS
PubMed
Google Scholar
Jochheim-Richter A, Rudrich U, Koczan D, Hillemann T, Tewes S, Petry M, et al. Gene expression analysis identifies novel genes participating in early murine liver development and adult liver regeneration. Differentiation. 2006;74(4):167–73 PubMed PMID: 16683987.
Article
CAS
PubMed
Google Scholar
Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41 PubMed PMID: 21113154.
Article
CAS
PubMed
Google Scholar
Chen F, Yao H, Wang M, Yu B, Liu Q, Li J, et al. Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs. Int J Biochem Cell Biol. 2016;80:154–62.
Article
CAS
PubMed
Google Scholar
Amen M, Liu X, Vadlamudi U, Elizondo G, Diamond E, Engelhardt JF, et al. PITX2 and beta-catenin interactions regulate Lef-1 isoform expression. Mol Cell Biol. 2007;27(21):7560–73 PubMed PMID: 17785445. Pubmed Central PMCID: 2169058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vadlamudi U, Espinoza HM, Ganga M, Martin DM, Liu X, Engelhardt JF, et al. PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J Cell Sci. 2005;118(Pt 6):1129–37 PubMed PMID: 15728254.
Article
CAS
PubMed
Google Scholar
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, et al. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol. 2006;294(2):482–96 PubMed PMID: 16631158.
Article
CAS
PubMed
Google Scholar
Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 2006;20(16):2293–305 PubMed PMID: 16912278. Pubmed Central PMCID: 1553211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu X, Lam E, Doughman YQ, Chen Y, Chou YT, Lam M, et al. Cited2, a coactivator of HNF4alpha, is essential for liver development. EMBO J. 2007;26(21):4445–56 PubMed PMID: 17932483. Pubmed Central PMCID: 2063472.
Article
CAS
PubMed
PubMed Central
Google Scholar