Skip to main content
Fig. 6 | Journal of Experimental & Clinical Cancer Research

Fig. 6

From: Correction: Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signaling in breast cancer

Fig. 6

YAP triggered FAK phosphorylation and focal adhesion through THBS1. (a) Western blot assays revealed that knockdown of THBS1 expression in MCF7-YAP-S127A cells could significantly reverse FAK Y397 phosphorylation. (b) Cell adhesion assays showed that knockdown of THBS1 could significantly reverse YAP-S127A-induced cell adhesion in MCF7 cells. The experiments were performed in triplicate. Scale bar: 100 μm. (c) Transwell invasion assays showed that knockdown of THBS1 could significantly reverse YAP-S127A-induced cell invasion in MCF7 cells. The experiments were performed in triplicate. Scale bar: 100 μm. (d) Quantification of the cell adhesion ability in (b). * p < 0.05 and ** p < 0.01 by ANOVA test. (e) Quantification of the cell invasion ability in (c). ** p < 0.01 by ANOVA test. (f) Knockdown of THBS1 inhibited focal adhesion in MCF7-YAP-S127A cells. Red: F-actin (stained with phalloidin); Green: paxilin; Blue: nucleus (stained with DAPI). Scale bar: 20 μm. (g) Knockdown of THBS1 reduced FAK Y397 phosphorylation in MDA-MB-231 cells. (h) Knockdown of THBS1 expression reduced cell adhesion to gelatin in MDAMB-231 cells. The experiments were performed in triplicate. Scale bar: 100 μm. (i) Transwell invasion assays showed that knockdown of THBS1 expression reduced cell invasion in MDA-MB-231 cells. The experiments were performed in triplicate. Scale bar: 100 μm. (j) Quantification of the cell adhesion ability in (h). ** p < 0.01 by ANOVA test. (k) Quantification of the cell invasion ability in (i). ** p < 0.01 by ANOVA test. (l) Knockdown of THBS1 reduced focal adhesion in MDA-MB-231 cells. Red: F-actin (stained with phalloidin); Green: paxilin; Blue: nucleus (stained with DAPI). Scale bar: 20 μm. (m) Model for how YAP regulates THBS1 expression and induces focal adhesion

Back to article page