Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013;140(3):223–38.
Article
CAS
PubMed
Google Scholar
Crona DJ, Whang YE. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers (Basel). 2017;9(6).
Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166(3):555–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fogg VC, Lanning NJ, Mackeigan JP. Mitochondria in cancer: At the crossroads of life and death. Chin J Cancer. 2011;30(8):526–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mamouni K, Kallifatidis G, Lokeshwar BL. Targeting mitochondrial metabolism in prostate cancer with triterpenoids. Int J Mol Sci. 2021;22(5).
Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: Connecting the dots. Mol Cancer. 2006;5:17.
Article
PubMed
PubMed Central
Google Scholar
Ippolito L, Marini A, Cavallini L, Morandi A, Pietrovito L, Pintus G, et al. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget. 2016;7(38):61890–904.
Article
PubMed
PubMed Central
Google Scholar
Lee YG, Nam Y, Shin KJ, Yoon S, Park WS, Joung JY, et al. Androgen-induced expression of drp1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett. 2020;471:72–87.
Article
CAS
PubMed
Google Scholar
Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30(13):2719–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grupp K, Jedrzejewska K, Tsourlakis MC, Koop C, Wilczak W, Adam M, et al. High mitochondria content is associated with prostate cancer disease progression. Mol Cancer. 2013;12(1):145.
Article
PubMed
PubMed Central
Google Scholar
Zhang D, He D, Xue Y, Wang R, Wu K, Xie H, et al. Prlz protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of stat3/bcl-2 pathway. Cancer Res. 2011;71(6):2193–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Ning Z, Wang B, Yun EJ, Zhang T, Pong RC, et al. Dab2ip loss confers the resistance of prostate cancer to androgen deprivation therapy through activating stat3 and inhibiting apoptosis. Cell Death Dis. 2015;6(10):e1955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontana F, Raimondi M, Marzagalli M, Audano M, Beretta G, Procacci P, et al. Mitochondrial functional and structural impairment is involved in the antitumor activity of δ-tocotrienol in prostate cancer cells. Free Radic Biol Med. 2020;160:376–90.
Article
CAS
PubMed
Google Scholar
Spangler SA, Jaarsma D, De Graaff E, Wulf PS, Akhmanova A, Hoogenraad CC. Differential expression of liprin-α family proteins in the brain suggests functional diversification. J Comp Neurol. 2011;519(15):3040–60.
Article
CAS
PubMed
Google Scholar
Serra-Pagès C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of lar transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem. 1998;273(25):15611–20.
Article
PubMed
Google Scholar
Serra-Pagès C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M. The lar transmembrane protein tyrosine phosphatase and a coiled-coil lar-interacting protein co-localize at focal adhesions. EMBO J. 1995;14(12):2827–38.
Article
PubMed
PubMed Central
Google Scholar
Mattauch S, Sachs M, Behrens J. Liprin-α4 is a new hypoxia-inducible target gene required for maintenance of cell-cell contacts. Exp Cell Res. 2010;316(17):2883–92.
Article
CAS
PubMed
Google Scholar
Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, Serra-Pagès C, et al. Interaction between grip and liprin-alpha/syd2 is required for ampa receptor targeting. Neuron. 2002;34(1):39–52.
Article
CAS
PubMed
Google Scholar
Yamasaki A, Nakayama K, Imaizumi A, Kawamoto M, Fujimura A, Oyama Y, et al. Liprin-α4 as a possible new therapeutic target for pancreatic cancer. Anticancer Res. 2017;37(12):6649–54.
CAS
PubMed
Google Scholar
Onishi H, Yamasaki A, Nakamura K, Ichimiya S, Yanai K, Umebayashi M, et al. Liprin-α4 as a new therapeutic target for sclc as an upstream mediator of hif1α. Anticancer Res. 2019;39(3):1179–84.
Article
CAS
PubMed
Google Scholar
Gottmann P, Ouni M, Zellner L, Jähnert M, Rittig K, Walther D, et al. Polymorphisms in mirna binding sites involved in metabolic diseases in mice and humans. Sci Rep. 2020;10(1):7202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Yang M, Liu Z, Li X, Wang J, Fu N, et al. Ppfia4 promotes colon cancer cell proliferation and migration by enhancing tumor glycolysis. Front Oncol. 2021;11:653200.
Article
PubMed
PubMed Central
Google Scholar
Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, et al. Modulation of redox homeostasis by inhibition of mthfd2 in colorectal cancer: Mechanisms and therapeutic implications. J Natl Cancer Inst. 2019;111(6):584–96.
Article
PubMed
Google Scholar
Yue L, Pei Y, Zhong L, Yang H, Wang Y, Zhang W, et al. Mthfd2 modulates mitochondrial function and DNA repair to maintain the pluripotency of mouse stem cells. Stem Cell Reports. 2020;15(2):529–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, et al. Padi2-mediated citrullination promotes prostate cancer progression. Cancer Res. 2017;77(21):5755–68.
Article
CAS
PubMed
Google Scholar
Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, et al. Kif15-mediated stabilization of ar and ar-v7 contributes to enzalutamide resistance in prostate cancer. Cancer Res. 2021;81(4):1026–39.
Article
CAS
PubMed
Google Scholar
Wang L, Song G, Chang X, Tan W, Pan J, Zhu X, et al. The role of txndc5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway. Oncogene. 2015;34(36):4735–45.
Article
CAS
PubMed
Google Scholar
Wang Y, Agarwal E, Bertolini I, Ghosh JC, Seo JH, Altieri DC. Idh2 reprograms mitochondrial dynamics in cancer through a hif-1α-regulated pseudohypoxic state. FASEB J. 2019;33(12):13398–411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, et al. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/ar-targeted therapy. Nat Commun. 2018;9(1):4972.
Article
PubMed
PubMed Central
Google Scholar
Xu Z, Xu L, Liu L, Li H, Jin J, Peng M, et al. A glycolysis-related five-gene signature predicts biochemical recurrence-free survival in patients with prostate adenocarcinoma. Front Oncol. 2021;11:625452.
Article
PubMed
PubMed Central
Google Scholar
Audet-Walsh É, Yee T, McGuirk S, Vernier M, Ouellet C, St-Pierre J, et al. Androgen-dependent repression of errγ reprograms metabolism in prostate cancer. Cancer Res. 2017;77(2):378–89.
Article
CAS
PubMed
Google Scholar
Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A, Badur MG, et al. Increased serine and one-carbon pathway metabolism by pkcλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell. 2019;35(3):385–400.e9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pällmann N, Deng K, Livgård M, Tesikova M, Jin Y, Frengen NS, et al. Stress-mediated reprogramming of prostate cancer one-carbon cycle drives disease progression. Cancer Res. 2021;81(15):4066–78.
Article
PubMed
Google Scholar
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.
Article
CAS
PubMed
Google Scholar
Wan X, Wang C, Huang Z, Zhou D, Xiang S, Qi Q, et al. Cisplatin inhibits sirt3-deacetylation mthfd2 to disturb cellular redox balance in colorectal cancer cell. Cell Death Dis. 2020;11(8):649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hebert-Chatelain E, Jose C, Gutierrez Cortes N, Dupuy JW, Rocher C, Dachary-Prigent J, et al. Preservation of nadh ubiquinone-oxidoreductase activity by src kinase-mediated phosphorylation of ndufb10. Biochim Biophys Acta. 2012;1817(5):718–25.
Article
CAS
PubMed
Google Scholar
Hebert-Chatelain E. Src kinases are important regulators of mitochondrial functions. Int J Biochem Cell Biol. 2013;45(1):90–8.
Article
CAS
PubMed
Google Scholar
Kawai J, Toki T, Ota M, Inoue H, Takata Y, Asahi T, et al. Discovery of a potent, selective, and orally available mthfd2 inhibitor (ds18561882) with in vivo antitumor activity. J Med Chem. 2019;62(22):10204–20.
Article
CAS
PubMed
Google Scholar
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80.
Article
CAS
PubMed
Google Scholar
Xiao J, Cohen P, Stern MC, Odedina F, Carpten J, Reams R. Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis. 2018;39(11):1311–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apaiajai N, Chunchai T, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Testosterone deprivation aggravates left-ventricular dysfunction in male obese insulin-resistant rats via impairing cardiac mitochondrial function and dynamics proteins. Gerontology. 2018;64(4):333–43.
Article
CAS
PubMed
Google Scholar
Sarniak A, Lipińska J, Tytman K, Lipińska S. Endogenous mechanisms of reactive oxygen species (ros) generation. Postepy Hig Med Dosw (Online) 2016;70(0):1150-1165.
Burton DG, Giribaldi MG, Munoz A, Halvorsen K, Patel A, Jorda M, et al. Androgen deprivation-induced senescence promotes outgrowth of androgen-refractory prostate cancer cells. PLoS One. 2013;8(6):e68003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang ST, Dillner K, Wu X, Pousette A, Norstedt G, Flores-Morales A. Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology. 2002;143(12):4897–906.
Article
CAS
PubMed
Google Scholar
Shiota M, Yokomizo A, Tada Y, Inokuchi J, Kashiwagi E, Masubuchi D, et al. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through twist1 and androgen receptor overexpression. Oncogene. 2010;29(2):237–50.
Article
CAS
PubMed
Google Scholar
Asperti C, Astro V, Totaro A, Paris S, de Curtis I. Liprin-alpha1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins. J Cell Sci. 2009;122(Pt 18):3225–32.
Article
CAS
PubMed
Google Scholar
Asperti C, Pettinato E, de Curtis I. Liprin-alpha1 affects the distribution of low-affinity beta1 integrins and stabilizes their permanence at the cell surface. Exp Cell Res. 2010;316(6):915–26.
Article
CAS
PubMed
Google Scholar
Xie X, Luo L, Liang M, Zhang W, Zhang T, Yu C, et al. Structural basis of liprin-α-promoted lar-rptp clustering for modulation of phosphatase activity. Nat Commun. 2020;11(1):169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650–62.
Article
CAS
PubMed
Google Scholar
Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell Prolif. 2020;53(1):e12718.
Article
PubMed
Google Scholar
Wang H, Huwaimel B, Verma K, Miller J, Germain TM, Kinarivala N, et al. Synthesis and antineoplastic evaluation of mitochondrial complex ii (succinate dehydrogenase) inhibitors derived from atpenin a5. ChemMedChem. 2017;12(13):1033–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyshlovoy SA, Kudryashova EK, Kaune M, Makarieva TN, Shubina LK, Busenbender T, et al. Urupocidin c: A new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci Rep. 2020;10(1):9764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng J, Moore S, Gomez-Galeno J, Lee DH, Okolotowicz KJ, Cashman JR. A novel small molecule inhibits tumor growth and synergizes effects of enzalutamide on prostate cancer. J Pharmacol Exp Ther. 2019;371(3):703–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng J, Okolotowicz KJ, Ryan D, Mose E, Lowy AM, Cashman JR. Inhibition of invasive pancreatic cancer: Restoring cell apoptosis by activating mitochondrial p53. Am J Cancer Res. 2019;9(2):390–405.
CAS
PubMed
PubMed Central
Google Scholar