Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20(6):353–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:6487.
Article
CAS
Google Scholar
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, et al. Targeting metabolism in Cancer cells and the tumour microenvironment for Cancer therapy. Molecules. 2020;25(20):4831.
Article
CAS
PubMed Central
Google Scholar
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20(1):28.
Article
PubMed
PubMed Central
Google Scholar
Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest. 2013;123(9):3652–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al. Cancer-derived succinate promotes macrophage polarization and Cancer metastasis via succinate receptor. Mol Cell. 2020;77(2):213–27 e5.
Article
CAS
PubMed
Google Scholar
Zhao T, Mu X, You Q. Succinate: an initiator in tumorigenesis and progression. Oncotarget. 2017;8(32):53819–28.
Article
PubMed
PubMed Central
Google Scholar
Matlac DM, Hadrava Vanova K, Bechmann N, Richter S, Folberth J, Ghayee HK, et al. Succinate mediates tumorigenic effects via succinate receptor 1: potential for new targeted treatment strategies in succinate dehydrogenase deficient Paragangliomas. Front Endocrinol (Lausanne). 2021;12:589451.
Article
Google Scholar
Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255–61.
Article
CAS
PubMed
Google Scholar
Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17(6):666–72.
Article
CAS
PubMed
Google Scholar
Seo J, Lee KJ. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol. 2004;37(1):35–44.
CAS
PubMed
Google Scholar
Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greene KS, Lukey MJ, Wang X, Blank B, Druso JE, Miao-chong JL, et al. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci. 2019;116(52):26625–32.
Article
CAS
PubMed Central
Google Scholar
Bhatt DP, Mills CA, Anderson KA, Henriques BJ, Lucas TG, Francisco S, et al. Deglutarylation of GCDH by SIRT5 controls lysine metabolism in mice. bioRxiv. 2020:2020.06.28.176677. https://doi.org/10.1101/2020.06.28.176677.
Allfrey VG, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. P Natl Acad Sci USA. 1964;51(5):786.
Article
CAS
Google Scholar
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–50.
Article
CAS
PubMed
Google Scholar
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009;8(2):215–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-021-00441-y.
Article
PubMed
Google Scholar
Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007;4(10):798–806.
Article
CAS
PubMed
Google Scholar
Tan M, Luo H, Lee S, Jin F, Yang Jeong S, Montellier E, et al. Identification of 67 histone Marks and histone lysine Crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2010;7(1):58–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, et al. Lysine Propionylation and Butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007;6(5):812–9.
Article
CAS
PubMed
Google Scholar
Peng C, Lu ZK, Xie ZY, Cheng ZY, Chen Y, Tan MJ, et al. The first identification of lysine Malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111 012658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol. 2014;10(5):365–70.
Article
CAS
PubMed
Google Scholar
Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, et al. Metabolic regulation of gene expression by histone lysine beta-Hydroxybutyrylation. Mol Cell. 2016;62(2):194–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabari Benjamin R, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong Ha E, et al. Intracellular Crotonyl-CoA stimulates transcription through p300-catalyzed histone Crotonylation. Mol Cell. 2015;58(2):203–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montellier E, Rousseaux S, Zhao Y, Khochbin S. Histone crotonylation specifically marks the haploid male germ cell gene expression program. BioEssays. 2012;34(3):187–93.
Article
CAS
PubMed
Google Scholar
Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, et al. Chromodomain protein CDYL acts as a Crotonyl-CoA Hydratase to regulate histone Crotonylation and spermatogenesis. Mol Cell. 2017;67(5):853–66 e5.
Article
CAS
PubMed
Google Scholar
Abu-Zhayia ER, Machour FE, Ayoub N. HDAC-dependent decrease in histone crotonylation during DNA damage. J Mol Cell Biol. 2019;11(9):804–6.
Article
PubMed
PubMed Central
Google Scholar
Yu H, Bu C, Liu Y, Gong T, Liu X, Liu S, et al. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair. Sci Adv. 2020;6(11):eaay4697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song X, Yang F, Liu X, Xia P, Yin W, Wang Z, et al. Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol. 2021;17(12):1314–23.
Article
CAS
PubMed
Google Scholar
Ruiz-Andres O, Sanchez-Nino MD, Cannata-Ortiz P, Ruiz-Ortega M, Egido J, Ortiz A, et al. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech. 2016;9(6):633–45.
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Li M, Fan M, Song Y, Yu H, Zhi X, et al. Chromodomain Y-like protein–mediated histone crotonylation regulates stress-induced depressive behaviors. Biol Psychiatry. 2019;85(8):635–49.
Article
CAS
PubMed
Google Scholar
Jiang G, Nguyen D, Archin NM, Yukl SA, Mendez-Lagares G, Tang Y, et al. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest. 2018;128(3):1190–8.
Article
PubMed
PubMed Central
Google Scholar
Fu H, Tian CL, Ye X, Sheng X, Wang H, Liu Y, et al. Dynamics of telomere rejuvenation during chemical induction to pluripotent stem cells. Stem Cell Reports. 2018;11(1):70–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang Y, Xu X, Ding J, Yang L, Doan MT, Karmaus PWF, et al. Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell. 2021;28(4):748–63 e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Chen K, Wang T, Wu Y, Xing G, Chen M, et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat Metab. 2020;2(9):882–92.
Article
CAS
PubMed
Google Scholar
Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 2021;64(1):115–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci U S A. 2020;117(48):30628–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smestad J, Erber L, Chen Y, Maher LJ III. Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. Iscience. 2018;2:63–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing Y, Ding D, Tian G, Kwan KCJ, Liu Z, Ishibashi T, et al. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res. 2020;48(17):9538–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, et al. Regulation of UCP1 and mitochondrial metabolism in Brown adipose tissue by reversible Succinylation. Mol Cell. 2019;74(4):844–57 e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH. Cholesterol is necessary both for the toxic effect of Aβ peptides on vascular smooth muscle cells and for Aβ binding to vascular smooth muscle cell membranes. J Neurochem. 2003;84(3):471–9.
Article
CAS
PubMed
Google Scholar
Vetri V, Librizzi F, Militello V, Leone M. Effects of succinylation on thermal induced amyloid formation in Concanavalin A. Eur Biophys J. 2007;36(7):733–41.
Article
CAS
PubMed
Google Scholar
Iqbal K, Wisniewski HM, Grundke-Iqbal I, Korthals JK, Terry RD. Chemical pathology of neurofibrils. Neurofibrillary tangles of Alzheimer's presenile-senile dementia. J Histochem Cytochem. 1975;23(7):563–9.
Article
CAS
PubMed
Google Scholar
Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A. 1988;85(12):4506–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hershberger KA, Abraham DM, Liu J, Locasale JW, Grimsrud PA, Hirschey MD. Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload. J Biol Chem. 2018;293(27):10630–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A. 2016;113(16):4320–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou B, Du Y, Xue Y, Miao G, Wei T, Zhang P. Identification of Malonylation, Succinylation, and Glutarylation in serum proteins of acute myocardial infarction patients. Proteomics Clin Appl. 2020;14(1):e1900103.
Article
CAS
PubMed
Google Scholar
Ali HR, Michel CR, Lin YH, McKinsey TA, Jeong MY, Ambardekar AV, et al. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. J Mol Cell Cardiol. 2020;138:304–17.
Article
CAS
PubMed
Google Scholar
Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 2015;88:73–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo C, Park S, Oh S, Choi J, Kim E-K, Youn H-D, et al. Histone acylation marks respond to metabolic perturbations and enable cellular adaptation. Exp Mol Med. 2020;52(12):2005–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kebede AF, Nieborak A, Shahidian LZ, Le Gras S, Richter F, Gomez DA, et al. Histone propionylation is a mark of active chromatin. Nat Struct Mol Biol. 2017;24(12):1048–56.
Article
CAS
PubMed
Google Scholar
Es-haghi A, Shariatizi S, Ebrahim-Habibi A, Nemat-Gorgani M. Amyloid fibrillation in native and chemically-modified forms of carbonic anhydrase II: role of surface hydrophobicity. Biochim Biophys Acta. 2012;1824(3):468–77.
Article
CAS
PubMed
Google Scholar
Liu S, Liu G, Cheng P, Xue C, Zhou Y, Chen X, et al. Genome-wide profiling of histone lysine Butyrylation reveals its role in the positive regulation of gene transcription in Rice. Rice (N Y). 2019;12(1):86.
Article
CAS
Google Scholar
Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, et al. Dynamic competing histone H4 K5K8 acetylation and Butyrylation are hallmarks of highly active gene promoters. Mol Cell. 2016;62(2):169–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galvan-Pena S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK, et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun. 2019;10(1):338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pougovkina O, Te Brinke H, Wanders RJ, Houten SM, de Boer VC. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism. J Inherit Metab Dis. 2014;37(5):709–14.
Article
CAS
PubMed
Google Scholar
Colak G, Pougovkina O, Dai L, Tan M, Te Brinke H, Huang H, et al. Proteomic and biochemical studies of lysine Malonylation suggest its Malonic Aciduria-associated regulatory role in mitochondrial function and fatty acid oxidation. Mol Cell Proteomics. 2015;14(11):3056–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Cai T, Xiao Z, Li D, Wan C, Cui X, et al. Identification of histone malonylation in the human fetal brain and implications for diabetes-induced neural tube defects. Mol Genet Genomic Med. 2020;8(9):e1403.
CAS
PubMed
PubMed Central
Google Scholar
Zhu S, Batushansky A, Jopkiewicz A, Makosa D, Humphries KM, Van Remmen H, et al. Sirt5 Deficiency Causes Posttranslational Protein Malonylation and Dysregulated Cellular Metabolism in Chondrocytes Under Obesity Conditions. CARTILAGE. 2021;13(2_suppl):1185S–99S.
Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, et al. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Mol Cell. 2019;76(4):660–75 e9.
Article
CAS
PubMed
Google Scholar
Schmiesing J, Storch S, Dorfler AC, Schweizer M, Makrypidi-Fraune G, Thelen M, et al. Disease-linked Glutarylation impairs function and interactions of mitochondrial proteins and contributes to mitochondrial heterogeneity. Cell Rep. 2018;24(11):2946–56.
Article
CAS
PubMed
Google Scholar
Cheng YM, Hu XN, Peng Z, Pan TT, Wang F, Chen HY, et al. Lysine glutarylation in human sperm is associated with progressive motility. Hum Reprod. 2019;34(7):1186–94.
Article
CAS
PubMed
Google Scholar
Zhang H, Tang K, Ma J, Zhou L, Liu J, Zeng L, et al. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development. Nat Cell Biol. 2019;22(1):18–25.
Article
CAS
PubMed
Google Scholar
Luo W, Yu Y, Wang H, Liu K, Wang Y, Huang M, et al. Up-regulation of MMP-2 by histone H3K9 beta-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat. Acta Diabetol. 2020;57(12):1501–9.
Article
CAS
PubMed
Google Scholar
Chen L, Miao Z, Xu X. β-Hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-β-hydroxybutyrylation. Biochem Biophys Res Commun. 2017;490(2):117–22.
Article
CAS
PubMed
Google Scholar
Wei W, Mao A, Tang B, Zeng Q, Gao S, Liu X, et al. Large-scale identification of protein Crotonylation reveals its role in multiple cellular functions. J Proteome Res. 2017;16(4):1743–52.
Article
CAS
PubMed
Google Scholar
Liu X, Wei W, Liu Y, Yang X, Wu J, Zhang Y, et al. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov. 2017;3:17016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Wan J, Zhan J, Li X, He H, Shi Z, et al. Global profiling of crotonylation on non-histone proteins. Cell Res. 2017;27(7):946–9.
Article
PubMed
PubMed Central
Google Scholar
Xiao Y, Li W, Yang H, Pan L, Zhang L, Lu L, et al. HBO1 is a versatile histone acyltransferase critical for promoter histone acylations. Nucleic Acids Res. 2021;49(14):8037–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan KZ, Rousseau J, Machol K, Cross LA, Agre KE, Gibson CF, et al. Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. Sci Adv. 2020;6(4):eaax0021.
Madsen AS, Olsen CA. Profiling of substrates for zinc-dependent lysine Deacylase enzymes: HDAC3 exhibits Decrotonylase activity In Vitro. Angew Chem. 2012;124(36):9217–21.
Article
Google Scholar
Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem. 2013;288(43):31350–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao X, Wang Y, Li X, Li X-M, Liu Z, Yang T, et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife. 2014;3:e02999.
Wei W, Liu X, Chen J, Gao S, Lu L, Zhang H, et al. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res. 2017;27(7):898–915.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Zeng L, Zhao C, Ju Y, Konuma T, Zhou MM. Structural insights into histone Crotonyl-lysine recognition by the AF9 YEATS domain. Structure. 2016;24(9):1606–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, et al. Molecular coupling of histone Crotonylation and active transcription by AF9 YEATS domain. Mol Cell. 2016;62(2):181–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A, Tsun IK, et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol. 2016;12(6):396–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y, et al. YEATS2 is a selective histone crotonylation reader. Cell Res. 2016;26(5):629–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong X, Panchenko T, Yang S, Zhao S, Yan P, Zhang W, et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat Chem Biol. 2016;12(12):1111–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF, Tang Y, et al. A subset of human Bromodomains recognizes Butyryllysine and Crotonyllysine histone peptide modifications. Structure. 2015;23(10):1801–14.
Article
CAS
PubMed
Google Scholar
Ichijima Y, Sin HS, Namekawa SH. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci. 2012;69(15):2559–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner JM. Meiotic sex chromosome inactivation. Development. 2007;134(10):1823–31.
Article
CAS
PubMed
Google Scholar
Abu-Zhayia ER, Awwad SW, Ben-Oz BM, Khoury-Haddad H, Ayoub N. CDYL1 fosters double-strand break-induced transcription silencing and promotes homology-directed repair. J Mol Cell Biol. 2018;10(4):341–57.
Article
CAS
PubMed
Google Scholar
Liu Y, Liu S, Yuan S, Yu H, Zhang Y, Yang X, et al. Chromodomain protein CDYL is required for transmission/restoration of repressive histone marks. J Mol Cell Biol. 2017;9(3):178–94.
Article
CAS
PubMed
Google Scholar
Xu X, Zhu X, Liu F, Lu W, Wang Y, Yu J. The effects of histone crotonylation and bromodomain protein 4 on prostate cancer cell lines. Transl Androl Urol. 2021;10(2):900–14.
Article
PubMed
PubMed Central
Google Scholar
Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun. 2018;9(1):105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.
Article
CAS
PubMed
Google Scholar
Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, et al. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 2009;54(10):2109–17.
Article
CAS
PubMed
Google Scholar
Christott T, Bennett J, Coxon C, Monteiro O, Giroud C, Beke V, et al. Discovery of a selective inhibitor for the YEATS domains of ENL/AF9. SLAS Discov. 2019;24(2):133–41.
Article
CAS
PubMed
Google Scholar
Li X, Li XM, Jiang Y, Liu Z, Cui Y, Fung KY, et al. Structure-guided development of YEATS domain inhibitors by targeting pi-pi-pi stacking. Nat Chem Biol. 2018;14(12):1140–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou JY, Cao J, Gao LJ, Zhang FP, Shen J, Zhou L, et al. Upregulation of alpha enolase (ENO1) crotonylation in colorectal cancer and its promoting effect on cancer cell metastasis. Biochem Biophys Res Commun. 2021;578:77–83.
Article
CAS
PubMed
Google Scholar
Wan J, Liu H, Ming L. Lysine crotonylation is involved in hepatocellular carcinoma progression. Biomed Pharmacother. 2019;111:976–82.
Article
CAS
PubMed
Google Scholar
Guo Z, Gu M, Huang J, Zhou P-k, Ma T. Global profiling of the crotonylome in Small cell lung Cancer. bioRxiv. 2020:2020.06.29.175877. https://doi.org/10.1101/2020.06.29.175877.
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet. 2018;19(5):311–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.
Article
CAS
PubMed
Google Scholar
Machour FE, Ayoub N. Transcriptional regulation at DSBs: mechanisms and consequences. Trends Genet. 2020;36(12):981–97.
Article
CAS
PubMed
Google Scholar
Patel R, Kumar A, Lokhande KB, Swamy K, Sharma P, Kumar N. Molecular Docking and Simulation Studies Predict Lactyl-CoA as the Substrate for P300 Directed Lactylation. ChemRxiv. 2020. Cambridge: Cambridge Open Engage; 2020. This content is a preprint and has not been peer-reviewed.
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, et al. Non-enzymatic lysine Lactoylation of glycolytic enzymes. Cell. Chem Biol. 2020;27(2):206–13 e6.
CAS
Google Scholar
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22(1):85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, et al. Lactate modulates cellular metabolism through histone Lactylation-mediated gene expression in non-Small cell lung Cancer. Front Oncol. 2021;11:647559.
Article
PubMed
PubMed Central
Google Scholar
San-Millan I, Julian CG, Matarazzo C, Martinez J, Brooks GA. Is lactate an Oncometabolite? Evidence supporting a role for lactate in the regulation of transcriptional activity of Cancer-related genes in MCF7 breast Cancer cells. Front Oncol. 2019;9:1536.
Article
PubMed
Google Scholar
Xie ZY, Dai JBA, Dai LZ, Tan MJ, Cheng ZY, Wu YM, et al. Lysine Succinylation and lysine Malonylation in histones. Mol Cell Proteomics. 2012;11(5):100–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner GR, Payne RM. Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem. 2013;288(40):29036–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4(4):842–51.
Article
CAS
PubMed
Google Scholar
Gibson GE, Xu H, Chen H-L, Chen W, Denton TT, Zhang S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J Neurochem. 2015;134(1):86–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Guo YR, Liu K, Yin Z, Liu R, Xia Y, et al. KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature. 2017;552(7684):273–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Guo D, Yan D, Ma C, Shao F, Wang Y, et al. KAT2A succinyltransferase activity-mediated 14-3-3zeta upregulation promotes beta-catenin stabilization-dependent glycolysis and proliferation of pancreatic carcinoma cells. Cancer Lett. 2020;469:1–10.
Article
CAS
PubMed
Google Scholar
Yuan Y, Yuan H, Yang G, Yun H, Zhao M, Liu Z, et al. IFN-alpha confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenetics. 2020;12(1):135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang G, Yuan Y, Yuan H, Wang J, Yun H, Geng Y, et al. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Rep. 2021;22(2):e50967.
Article
CAS
PubMed
Google Scholar
Kurmi K, Hitosugi S, Wiese EK, Boakye-Agyeman F, Gonsalves WI, Lou Z, et al. Carnitine Palmitoyltransferase 1A has a lysine Succinyltransferase activity. Cell Rep. 2018;22(6):1365–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Zhang C, Li X, Shen J, Xu Y, Shi H, et al. CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion. J Cell Mol Med. 2019;23(1):293–305.
Article
CAS
PubMed
Google Scholar
Li X, Zhang C, Zhao T, Su ZP, Li MJ, Hu JC, et al. Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer. J Exp Clin Cancer Res. 2020;39(1):172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du JT, Zhou YY, Su XY, Yu JJ, Khan S, Jiang H, et al. Sirt5 is a NAD-dependent protein lysine Demalonylase and Desuccinylase. Science. 2011;334(6057):806–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18(6):920–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Jin J, Chung MWH, Feng L, Sun HY, Hao Q. Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. P Natl Acad Sci USA. 2018;115(10):2365–70.
Article
CAS
Google Scholar
Xie L, Liu W, Li Q, Chen S, Xu M, Huang Q, et al. First succinyl-proteome profiling of extensively drug-resistant mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res. 2015;14(1):107–19.
Article
CAS
PubMed
Google Scholar
Gao Y, Lee H, Kwon OK, Tan M, Kim KT, Lee S. Global proteomic analysis of lysine Succinylation in Zebrafish (Danio rerio). J Proteome Res. 2019;18(10):3762–9.
Article
CAS
PubMed
Google Scholar
He D, Wang Q, Li M, Damaris RN, Yi X, Cheng Z, et al. Global proteome analyses of lysine acetylation and Succinylation reveal the widespread involvement of both modification in metabolism in the embryo of germinating Rice seed. J Proteome Res. 2016;15(3):879–90.
Article
CAS
PubMed
Google Scholar
Fukushima A, Alrob OA, Zhang L, Wagg CS, Altamimi T, Rawat S, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Physiol Heart Circ Physiol. 2016;311(2):H347–63.
Article
PubMed
Google Scholar
Park J, Chen Y, Tishkoff DX, Peng C, Tan MJ, Dai LZ, et al. SIRT5-mediated lysine Desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50(6):919–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ostergaard E. Disorders caused by deficiency of succinate-CoA ligase. J Inherit Metab Dis. 2008;31(2):226–9.
Article
CAS
PubMed
Google Scholar
Gut P, Matilainen S, Meyer JG, Pallijeff P, Richard J, Carroll CJ, et al. SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nat Commun. 2020;11(1):5927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson GE, Hirsch JA, Cirio RT, Jordan BD, Fonzetti P, Elder J. Abnormal thiamine-dependent processes in Alzheimer's disease. Lessons from diabetes. Mol Cell Neurosci. 2013;55:17–25.
Article
CAS
PubMed
Google Scholar
Gibson GE, Park LC, Sheu K-FR, Blass JP, Calingasan NY. The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int. 2000;36(2):97–112.
Article
CAS
PubMed
Google Scholar
Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57(5):695–703.
Article
CAS
PubMed
Google Scholar
Lutz MI, Milenkovic I, Regelsberger G, Kovacs GG. Distinct patterns of sirtuin expression during progression of Alzheimer's disease. Neuro Molecular Med. 2014;16(2):405–14.
Article
CAS
Google Scholar
Ren S, Yang M, Yue Y, Ge F, Li Y, Guo X, et al. Lysine Succinylation contributes to Aflatoxin production and pathogenicity in Aspergillus flavus. Mol Cell Proteomics. 2018;17(3):457–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Zhao M, Luo D, Yu C, Shao S, Zhao L, et al. Quantitative analysis of the proteome and the Succinylome in the thyroid tissue of high-fat diet-induced Hypothyroxinemia in rats. Int J Endocrinol. 2020;2020:3240198.
PubMed
PubMed Central
Google Scholar
Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, et al. SIRT5 Desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. 2017;19(11):2331–44.
Article
CAS
PubMed
Google Scholar
Lu X, Yang P, Zhao X, Jiang M, Hu S, Ouyang Y, et al. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp Cell Res. 2019;382(2):111483.
Article
CAS
PubMed
Google Scholar
Song Y, Wang J, Cheng Z, Gao P, Sun J, Chen X, et al. Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer. Sci Rep. 2017;7:42053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Guo D, Lin SH, Liang J, Yang D, Ma C, et al. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells. Mol Cell. 2021;81(11):2303–16 e8.
Article
CAS
PubMed
Google Scholar
Kwon OK, Bang IH, Choi SY, Jeon JM, Na AY, Gao Y, et al. SIRT5 Is the desuccinylase of LDHA as novel cancer metastatic stimulator in aggressive prostate cancer. Genomics Proteomics Bioinformatics. 2022:S1672-0229(22)00018–3. https://doi.org/10.1016/j.gpb.2022.02.004.
Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013;441(1):191–5.
Article
CAS
PubMed
Google Scholar
Qi H, Ning X, Yu C, Ji X, Jin Y, McNutt MA, et al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis. 2019;10(3):170.
Article
PubMed
PubMed Central
Google Scholar
Li F, He X, Ye D, Lin Y, Yu H, Yao C, et al. NADP(+)-IDH mutations promote Hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell. 2015;60(4):661–75.
Article
CAS
PubMed
Google Scholar
Ma Y, Qi Y, Wang L, Zheng Z, Zhang Y, Zheng J. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic Biol Med. 2019;134:458–67.
Article
CAS
PubMed
Google Scholar
Lukey MJ, Greene KS, Cerione RA. Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism. Mol Cell Oncol. 2020;7(3):1735284.
Article
PubMed
PubMed Central
Google Scholar
Ren M, Yang X, Bie J, Wang Z, Liu M, Li Y, et al. Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration. Biol Chem. 2020;401(9):1031–9.
Article
CAS
PubMed
Google Scholar
Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, et al. SHMT2 Desuccinylation by SIRT5 drives Cancer cell proliferation. Cancer Res. 2018;78(2):372–86.
Article
CAS
PubMed
Google Scholar
Xiangyun Y, Xiaomin N. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 2017;8(4):6984.
Article
PubMed
Google Scholar
Abril YLN, Fernandez IR, Hong JY, Chiang YL, Kutateladze DA, Zhao Q, et al. Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene. 2021;40(9):1644–58.
Article
CAS
PubMed
Google Scholar
Guo Z, Pan F, Peng L, Tian S, Jiao J, Liao L, et al. Systematic proteome and lysine Succinylome analysis reveals enhanced cell migration by Hyposuccinylation in esophageal squamous cell carcinoma. Mol Cell Proteomics. 2021;20:100053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Gao R, Yang J, Zhu Y, Zhang Z, Xu X, et al. Quantitative global proteome and lysine Succinylome analyses reveal the effects of energy metabolism in renal cell carcinoma. Proteomics. 2018;18(19):e1800001.
Article
CAS
PubMed
Google Scholar
Warburg O, Negelein E, Posener K. Versuche an überlebendem Carcinomgewebe. Klin Wochenschr. 1924;3(24):1062–4.
Article
CAS
Google Scholar
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.
Article
CAS
PubMed
Google Scholar
Zhu D, Hou L, Hu B, Zhao H, Sun J, Wang J, et al. Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate. Sci Rep. 2016;6(1):37478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K. Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem. 2009;284(47):32288–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Chen Y, Mang ZH, Zhao YM. Identification and verification of lysine Propionylation and Butyrylation in yeast Core histones using PTMap software. J Proteome Res. 2009;8(2):900–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol. 2012;7(6):947–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SS, et al. Molecular characterization of propionyllysines in non-histone proteins. Mol Cell Proteomics. 2009;8(1):45–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Z, Wu H, Kim S, Yang X, Li Q, Huang H, et al. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first). J Biol Chem. 2018;293(9):3410–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ringel AE, Wolberger C. Structural basis for acyl-group discrimination by human Gcn5L2. Acta Crystallogr D Struct Biol. 2016;72(Pt 7):841–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nahomi RB, Nandi SK, Rakete S, Michel C, Fritz KS, Nagaraj RH. Lysine malonylation and propionylation are prevalent in human lens proteins. Exp Eye Res. 2020;190:107864.
Article
CAS
PubMed
Google Scholar
Vollmuth F, Geyer M. Interaction of propionylated and butyrylated histone H3 lysine marks with Brd4 bromodomains. Angew Chem Int Ed Eng. 2010;49(38):6768–72.
Article
CAS
Google Scholar
Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun. 2014;5:3630.
Article
CAS
PubMed
Google Scholar
Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh B, Boopathy S, Somasundaram K, Umapathy S. Fourier transform infrared microspectroscopy identifies protein propionylation in histone deacetylase inhibitor treated glioma cells. J Biophotonics. 2012;5(3):230–9.
Article
CAS
PubMed
Google Scholar
Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary Fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.
Article
CAS
PubMed
Google Scholar
Hogh RI, Moller SH, Jepsen SD, Mellergaard M, Lund A, Pejtersen M, et al. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J. 2020;34(11):15531–46.
Article
CAS
PubMed
Google Scholar
Xu G, Wang J, Wu Z, Qian L, Dai L, Wan X, et al. SAHA regulates histone acetylation, Butyrylation, and protein expression in neuroblastoma. J Proteome Res. 2014;13(10):4211–9.
Article
CAS
PubMed
Google Scholar
Zhao YL, Fang XL, Wang Y, Zhang JM, Jiang S, Liu Z, et al. Comprehensive analysis for histone acetylation of human Colon Cancer cells treated with a novel HDAC inhibitor. Curr Pharm Design. 2014;20(11):1866–73.
Article
CAS
Google Scholar
Souza BK, da Costa Lopez PL, Menegotto PR, Vieira IA, Kersting N, Abujamra AL, et al. Targeting histone Deacetylase activity to arrest cell growth and promote neural differentiation in Ewing sarcoma. Mol Neurobiol. 2018;55(9):7242–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Li L, Zhu M, Wang G, Xie J, Zhao Y, et al. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. J Proteome. 2015;112:180–9.
Article
CAS
Google Scholar
Hegedus R, Manea M, Orban E, Szabo I, Kiss E, Sipos E, et al. Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem. 2012;56:155–65.
Article
CAS
PubMed
Google Scholar
Kapuvari B, Hegedus R, Schulcz A, Manea M, Tovari J, Gacs A, et al. Improved in vivo antitumor effect of a daunorubicin - GnRH-III bioconjugate modified by apoptosis inducing agent butyric acid on colorectal carcinoma bearing mice. Investig New Drugs. 2016;34(4):416–23.
Article
CAS
Google Scholar
Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr. 2008;28:253–72.
Article
CAS
PubMed
Google Scholar
Qian L, Nie L, Chen M, Liu P, Zhu J, Zhai L, et al. Global profiling of protein lysine Malonylation in Escherichia coli reveals its role in energy metabolism. J Proteome Res. 2016;15(6):2060–71.
Article
CAS
PubMed
Google Scholar
Ishiguro T, Tanabe K, Kobayashi Y, Mizumoto S, Kanai M, Kawashima SA. Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins. Sci Rep. 2018;8(1):7671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, et al. SIRT5 regulates both cytosolic and mitochondrial protein Malonylation with glycolysis as a major target. Mol Cell. 2015;59(2):321–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Z, Liu X, Chen T, Gao W, Wu Z, Hu Z, et al. Targeting a Sirt5-positive subpopulation overcomes multidrug resistance in wild-type Kras colorectal carcinomas. Cell Rep. 2018;22(10):2677–89.
Article
CAS
PubMed
Google Scholar
Gao W, Xu Y, Chen T, Du Z, Liu X, Hu Z, et al. Targeting oxidative pentose phosphate pathway prevents recurrence in mutant Kras colorectal carcinomas. PLoS Biol. 2019;17(8):e3000425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR Malonylation. Cell Metab. 2018;28(6):866–80 e15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y-Q, Wang H-L, Xu J, Tan J, Fu L-N, Wang J-L, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature. Communications. 2018;9(1):545.
Google Scholar
Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, et al. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 2016;17(6):811–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol. 2012;2012:762825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB. Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol. 2004;14(3):259–66.
Article
PubMed
Google Scholar
Meng X, Xing S, Perez LM, Peng X, Zhao Q, Redoña ED, et al. Proteome-wide analysis of lysine 2-hydroxyisobutyrylation in developing Rice (Oryza sativa) seeds. Sci Rep. 2017;7(1):17486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Luo Z, Qi S, Huang J, Xu P, Wang X, et al. Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Res. 2018;28(1):111–25.
Article
CAS
PubMed
Google Scholar
Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, et al. p300-mediated lysine 2-Hydroxyisobutyrylation regulates glycolysis. Mol Cell. 2018;70(4):663–78 e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Luo Z, Ying W, Cao Q, Huang H, Dong J, et al. 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2017;114(33):8782–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Zhai G, Chen C, Bai X, Tian S, Hu D, et al. Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes. Sci Adv. 2019;5(7):eaaw6703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L-n, Yuan H-f, Wang Y-f, Yun H-l, Zheng W, Yuan Y, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2021. https://doi.org/10.1038/s41401-021-00765-7.
Li QQ, Hao JJ, Zhang Z, Krane LS, Hammerich KH, Sanford T, et al. Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep. 2017;7(1):201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bass MV, Armeev GA, Shaitan KV, Shaytan AK. The effect of Oncomutations and posttranslational modifications of histone H1 on Chromatosome structure and stability. Mosc Univ Biol Sci Bull. 2019;74(3):121–6.
Article
Google Scholar
Yuan Y, Yuan HF, Geng Y, Zhao LN, Yun HL, Wang YF, et al. Aspirin modulates 2-hydroxyisobutyrylation of ENO1K281 to attenuate the glycolysis and proliferation of hepatoma cells. Biochem Biophys Res Commun. 2021;560:172–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Xie H, Zuo W, Tang J, Zeng Z, Cai W, et al. Lysine 2-hydroxyisobutyrylation proteomics reveals protein modification alteration in the actin cytoskeleton pathway of oral squamous cell carcinoma. J Proteome. 2021;249:104371.
Article
CAS
Google Scholar
Nie LB, Liang QL, Elsheikha HM, Du R, Zhu XQ, Li FC. Global profiling of lysine 2-hydroxyisobutyrylome in toxoplasma gondii using affinity purification mass spectrometry. Parasitol Res. 2020;119(12):4061–71.
Article
PubMed
Google Scholar
Chriett S, Dabek A, Wojtala M, Vidal H, Balcerczyk A, Pirola L. Prominent action of butyrate over beta-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci Rep. 2019;9(1):742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S, Marquez JA, et al. Structure of p300 in complex with acyl-CoA variants. Nat Chem Biol. 2017;13(1):21–9.
Article
CAS
PubMed
Google Scholar
Huang H, Zhang D, Weng Y, Delaney K, Tang Z, Yan C, et al. The regulatory enzymes and protein substrates for the lysine beta-hydroxybutyrylation pathway. Sci Adv. 2021;7(9):eabe2771.
Zhang X, Cao R, Niu J, Yang S, Ma H, Zhao S, et al. Molecular basis for hierarchical histone de-beta-hydroxybutyrylation by SIRT3. Cell Discov. 2019;5:35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishitani S, Fukuhara A, Shin J, Okuno Y, Otsuki M, Shimomura I. Metabolomic and microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-hydroxybutyrate on induction of adiponectin in adipocytes. Sci Rep. 2018;8(1):8805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Chang Z, Qin LN, Liang B, Han JX, Qiao KL, et al. MTA2 triggered R-loop trans-regulates BDH1-mediated beta-hydroxybutyrylation and potentiates propagation of hepatocellular carcinoma stem cells. Signal Transduct Target Ther. 2021;6(1):135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157–65.
Article
CAS
PubMed
Google Scholar
Liu K, Li F, Sun Q, Lin N, Han H, You K, et al. p53 beta-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019;10(3):243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao P, Bhattarai N, Cao B, Zhou X, Jung JH, Damera K, et al. Crotonylation at serine 46 impairs p53 activity. Biochem Biophys Res Commun. 2020;524(3):730–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Rong F, Tang J, Zhu C, Chen X, Jia S, et al. Repression of p53 function by SIRT5-mediated desuccinylation at lysine 120 in response to DNA damage. Cell Death Differ. 2022;29(4):722–36.
Article
CAS
PubMed
Google Scholar
Simithy J, Sidoli S, Yuan Z-F, Coradin M, Bhanu NV, Marchione DM, et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun. 2017;8(1):1141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer. 2006;5:60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, et al. Pan-Cancer analysis reveals the functional importance of protein lysine modification in Cancer development. Front Genet. 2018;9:254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19(1):79.
Article
PubMed
PubMed Central
Google Scholar