Hanahan D. Hallmarks of Cancer: new dimensions. Cancer Discov. 2022;12:31–46.
Article
CAS
PubMed
Google Scholar
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7:1016–36.
CAS
PubMed
PubMed Central
Google Scholar
Rhind N, Russell P. Signaling pathways that regulate cell division. Cold Spring Harb Perspect Biol. 2012;4:a005942.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol. 2013;5:a008904.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barbacid M, Ortega S, Sotillo R, Odajima J, Martín A, Santamaría D, et al. Cell cycle and cancer: genetic analysis of the role of cyclin-dependent kinases. Cold Spring Harb Symp Quant Biol. 2005;70:233–40.
Article
CAS
PubMed
Google Scholar
Helsten T, Kato S, Schwaederle M, Tomson BN, Buys TPH, Elkin SK, et al. Cell-cycle gene alterations in 4,864 tumors analyzed by next-generation sequencing: implications for targeted therapeutics. Mol Cancer Ther. 2016;15:1682–90.
Article
CAS
PubMed
Google Scholar
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017(2):93–115.
Ghelli Luserna Di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: A new therapeutic window? J Hematol Oncol. 2019;12(1):123.
Article
PubMed
PubMed Central
Google Scholar
Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer. 2019;144(1):8–25.
Wu F, Sun Y, Chen J, Li H, Yao K, Liu Y, et al. The oncogenic role of APC/C activator protein Cdc20 by an integrated Pan-Cancer analysis in human tumors. Front Oncol. 2021;11:721797.
Article
PubMed
PubMed Central
Google Scholar
Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003;9:991–7.
CAS
PubMed
Google Scholar
Chang DZ, Ma Y, Ji B, Liu Y, Hwu P, Abbruzzese JL, et al. Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol. 2012;5:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan B, Xu Y, Woo J-H, Wang Y, Bae YK, Yoon D-S, et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res. 2006;12:405–10.
Article
CAS
PubMed
Google Scholar
Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R, Lintunen M, et al. Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer. 2014;110:2905–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M. Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol. 2012;106:423–30.
Article
CAS
PubMed
Google Scholar
Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 2008;27:1562–71.
Article
CAS
PubMed
Google Scholar
Kwan PS, Lau CC, Chiu YT, Man C, Liu J, Tang KD, et al. Daxx regulates mitotic progression and prostate cancer predisposition. Carcinogenesis. 2013;34:750–9.
Article
CAS
PubMed
Google Scholar
Wang Q, Tiffen J, Bailey CG, Lehman ML, Ritchie W, Fazli L, et al. Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J Natl Cancer Inst. 2013;105:1463–73.
Article
CAS
PubMed
Google Scholar
Bieniek J, Childress C, Swatski MD, Yang W. COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate. 2014;74:999–1011.
Article
CAS
PubMed
Google Scholar
Li J, Gao J-Z, Du J-L, Huang Z-X, Wei L-X. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol. 2014;45:1547–55.
Article
CAS
PubMed
Google Scholar
Kim H-S, Vassilopoulos A, Wang R-H, Lahusen T, Xiao Z, Xu X, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20:487–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Y, Lu L, Wu L, Chen H, Zhu W, He Y. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA-seq data analysis. Mol Med Rep. 2017;15:1661–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Q, Zhao H, Zhang C, Hu T, Wu J, Lin X, et al. Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers. Oncotarget. 2017;8:42983–96.
Article
PubMed
PubMed Central
Google Scholar
Yang D, He Y, Wu B, Deng Y, Wang N, Li M, et al. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. J Ovarian Res. 2020;13(1):10.
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle. 2018;17:43–52.
Article
CAS
PubMed
Google Scholar
Si WM, Yu MQ, Dong LD, Juan LX, Juan DL, Li N, et al. CDC20 and its downstream genes: potential prognosis factors of osteosarcoma. Int J Clin Oncol. 2019;24:1479–89.
Article
Google Scholar
Gao Y, Guo C, Fu S, Cheng Y, Song C. Downregulation of CDC20 suppressed cell proliferation, induced apoptosis, triggered cell cycle arrest in osteosarcoma cells, and enhanced chemosensitivity to cisplatin. Neoplasma. 2021;68:382–90.
Article
PubMed
Google Scholar
Marucci G, Morandi L, Magrini E, Farnedi A, Franceschi E, Miglio R, et al. Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20. Virchows Arch. 2008;453:599–609.
Article
CAS
PubMed
Google Scholar
Ji P, Smith SM, Wang Y, Jiang R, Song SW, Li B, et al. Inhibition of gliomagenesis and attenuation of mitotic transition by MIIP. Oncogene. 2010;29:3501–8.
Article
CAS
PubMed
Google Scholar
Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther. 2015;151:141–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, et al. Cdc20: a potential novel therapeutic target for cancer treatment. Curr Pharm Des. 2013;19:3210–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao WCH, Kulkarni K, Zhang Z, Kong EH, Barford D. Structure of the mitotic checkpoint complex. Nature. 2012;484:208–13.
Article
CAS
PubMed
Google Scholar
Hyun SY, Sarantuya B, Lee HJ, Jang YJ. APC/CCdh1-dependent degradation of Cdc20 requires a phosphorylation on CRY-box by polo-like kinase-1 during somatic cell cycle. Biochem Biophys Res Commun. 2013;436:12–8.
Article
CAS
PubMed
Google Scholar
Tian W, Li B, Warrington R, Tomchick DR, Yu H, Luo X. Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. Proc Natl Acad Sci U S A. 2012;109:18419–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H. Cdc20: A WD40 activator for a cell cycle degradation machine. Mol Cell. 2007;27:3–16.
Article
CAS
PubMed
Google Scholar
Tang Z, Bharadwaj R, Li B, Yu H. Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell. 2001;1(2):227–37.
Hartwell LH, Culotti J, Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A. 1970;66:352–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, York JP, Zhang P. Loss of Cdc20 causes a Securin-dependent metaphase arrest in two-cell mouse embryos. Mol Cell Biol. 2007;27:3481–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Fang X, Wei Z, York JP, Zhang P. Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. J Cell Biol. 2009;185:983–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malureanu L, Jeganathan KB, Jin F, Baker DJ, van Ree JH, Gullon O, et al. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis. J Cell Biol. 2010;191:313–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo C, Kong F, Lv Y, Gao N, Xiu X, Sun X. CDC20 inhibitor Apcin inhibits embryo implantation in vivo and in vitro. Cell Biochem Funct. 2020;38:810–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet. 2021;38(5):993–1002.
Article
PubMed
Google Scholar
Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol. 2012;22:R966–80.
Article
CAS
PubMed
Google Scholar
Ovejero S, Bueno A, Sacristán MP. Working on genomic stability: from the S-phase to mitosis. Genes (Basel). 2020;11(2):225.
Maresca TJ, Salmon ED. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci. 2010;123:825–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Vader G, Vromans MJM, Lampson MA, Lens SMA. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science (80- ). 2009;323:1350–3.
Article
CAS
Google Scholar
Welburn JPI, Vleugel M, Liu D, Yates JR, Lampson MA, Fukagawa T, et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule Interface. Mol Cell. 2010;38:383–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stucke VM, Baumann C, Nigg EA. Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. Chromosoma. 2004;113:1–15.
Article
CAS
PubMed
Google Scholar
Nijenhuis W, Von Castelmur E, Littler D, De Marco V, Tromer E, Vleugel M, et al. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. J Cell Biol. 2013;201:217–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrovic A, Keller J, Liu Y, Overlack K, John J, Dimitrova YN, et al. Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell. 2016;167:1028–1040.e15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol. 2012;22:891–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
London N, Ceto S, Ranish JA, Biggins S. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol. 2012;22:900–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vleugel M, Tromer E, Omerzu M, Groenewold V, Nijenhuis W, Snel B, et al. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J Cell Biol. 2013;203:943–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamagishi Y, Yang CH, Tanno Y, Watanabe Y. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol. 2012;14:746–52.
Article
CAS
PubMed
Google Scholar
Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, van Gerwen S, et al. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife. 2013;2:e01030.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larsen NA, Al-Bassam J, Wei RR, Harrison SC. Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci U S A. 2007;104:1201–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mora-Santos M del M, Hervas-Aguilar A, Sewart K, Lancaster TC, Meadows JC, Millar JBA. Bub3-Bub1 binding to Spc7/KNL1 toggles the spindle checkpoint switch by licensing the interaction of Bub1 with Mad1-Mad2. Curr Biol. 2016;26:2642–50.
Article
CAS
Google Scholar
Mapelli M, Massimiliano L, Santaguida S, Musacchio A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell. 2007;131:730–43.
Article
CAS
PubMed
Google Scholar
Tipton AR, Ji W, Sturt-Gillespie B, Bekier ME, Wang K, Taylor WR, et al. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex. J Biol Chem. 2013;288:5149–58.
Article
CAS
Google Scholar
Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol. 2010;19:25–34.
Article
CAS
Google Scholar
DiFiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, et al. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev Cell. 2015.
Piano V, Alex A, Stege P, Maffini S, Stoppiello GA, Huis In’T Veld PJ, et al. CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science (80- ). 2021;371:67–71.
Article
CAS
Google Scholar
Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun. 2016;7:10818.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A, et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open. 2015;5:11–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alfieri C, Chang L, Zhang Z, Yang J, Maslen S, Skehel M, et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature. 2016;536:431–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson ER, Brown NG, Peters J-M, Stark H, Schulman BA. Posing the APC/C E3 ubiquitin ligase to orchestrate cell division. Trends Cell Biol. 2019;29:117–34.
Article
CAS
PubMed
Google Scholar
Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol. 1999;1:82–7.
Article
CAS
PubMed
Google Scholar
Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet. 2001;35:673–745.
Article
CAS
PubMed
Google Scholar
Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. J Cell Biol. 2013;201:1013–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell. 2000;11:1555–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 2003;22:6598–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, et al. Tank binding kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868:118929.
Article
CAS
PubMed
Google Scholar
Garrido D, Bourouh M, Bonneil É, Thibault P, Swan A, Archambault V. Cyclin B3 activates the anaphase-promoting complex/Cyclosome in meiosis and mitosis. PLoS Genet. 2020;16(11):e10.
Article
CAS
Google Scholar
Fujimitsu K, Yamano H. PP2A-B56 binds to Apc1 and promotes Cdc20 association with the APC/C ubiquitin ligase in mitosis. EMBO Rep. 2020;21(1):e485.
Article
CAS
Google Scholar
Khumukcham SS, Samanthapudi VSK, Penugurti V, Kumari A, Kesavan PS, Velatooru LR, et al. Hematopoietic PBX-interacting protein is a substrate and an inhibitor of the APC/C–Cdc20 complex and regulates mitosis by stabilizing cyclin B1. J Biol Chem. 2019;294:10236–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.
Article
CAS
PubMed
Google Scholar
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1:e90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zur A, Brandeis M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J. 2001;20:792–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirayama M, Tóth A, Gálová M, Nasmyth K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature. 1999;402:203–7.
Article
CAS
PubMed
Google Scholar
Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol. 2001;153:137–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Tischer T, Barford D. Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C. Nat Commun. 2019;10:3863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hames RS. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 2001;20:7117–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson J. Escape from the checkpoint: Nek2A binds a unique conformation of the APC /C- MCC complex. EMBO Rep. 2020;21:e50494.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Li R, Gu L, Deng H, Zhao Y, Guo Y, et al. Anaphase-promoting complex/cyclosome-Cdc-20 promotes Zwint-1 degradation. Cell Biochem Funct. 2020;38:451–9.
Article
CAS
PubMed
Google Scholar
Amador V, Ge S, Santamaría PG, Guardavaccaro D, Pagano M. APC/CCdc20 controls the ubiquitin-mediated degradation of p21 in Prometaphase. Mol Cell. 2007;27:462–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Wu T, Kirschner MW. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife. 2014;3.
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci. 2021;78(11):4955–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Kim AH, Yamada T, Wu B, Bilimoria PM, Ikeuchi Y, et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science. 2009;326:575–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okuda S, Sato M, Kato S, Nagashima S, Inatome R, Yanagi S, et al. Oscillation of Cdc20-APC/C-mediated CAMDI stability is critical for cortical neuron migration. J Biol Chem. 2021;297(2):100.
Article
CAS
Google Scholar
Kuang C, Golden KL, Simon CR, Damrath J, Buttitta L, Gamble CE, et al. A novel fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells. Development. 2014;141:1453–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quek LS, Grasset N, Jasmen JB, Robinson KS, Bellanger S. Dual role of the anaphase promoting complex/Cyclosome in regulating Stemness and differentiation in human primary keratinocytes. J Invest Dermatol. 2018;138:1851–61.
Article
CAS
PubMed
Google Scholar
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee SB, Kim JJ, Nam HJ, Gao B, Yin P, Qin B, et al. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol Cell. 2015;60:21–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul D, Ghorai S, Dinesh US, Shetty P, Chattopadhyay S, Santra MK. Cdc20 directs proteasome-mediated degradation of the tumor suppressor SMAR1 in higher grades of cancer through the anaphase promoting complex. Cell Death Dis. 2017;8:e2882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita H, Sasaki T, Miyamoto T, Akutsu SN, Sato S, Mori T, et al. Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. Aging Cell. 2020;19:e13251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie YP, Lai S, Lin QY, Xie X, Liao JW, Wang HX, et al. CDC20 regulates cardiac hypertrophy via targeting LC3-dependent autophagy. Theranostics. 2018;8:5995–6007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Q, Li F, Ge S, Zhang F, Jia R, Fan X. CDC20 knockdown and acidic microenvironment collaboratively promote tumorigenesis through inhibiting autophagy and apoptosis. Mol Ther Oncolytics. 2020;17:94–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chun AC-S, Kok K-H, Jin D-Y. REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1. Cell Cycle. 2013;12:365–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadjihannas MV, Bernkopf DB, Brückner M, Behrens J. Cell cycle control of Wnt/β-catenin signalling by conductin/axin2 through CDC20. EMBO Rep. 2012;13:347–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao DD, Gujar AD, Mahlokozera T, Chen I, Pan Y, Luo J, et al. A CDC20-APC/SOX2 signaling Axis regulates human Glioblastoma stem-like cells. Cell Rep. 2015;11:1809–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Yu Y, Fu D, Li Z, Niu X, Liao M, et al. Functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis. Cell Biochem Funct. 2010;28:249–57.
Article
PubMed
CAS
Google Scholar
Fu D, Ma Y, Wu W, Zhu X, Jia C, Zhao Q, et al. Cell-cycle-dependent PC-PLC regulation by APC/CCdc20-mediated ubiquitin-proteasome pathway. J Cell Biochem. 2009;107:686–96.
Article
CAS
PubMed
Google Scholar
Harley ME, Allan LA, Sanderson HS, Clarke PR. Phosphorylation of Mcl-1 by CDK1–cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 2010;29:2407–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sloss O, Topham C, Diez M, Taylor S. Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget. 2016;7:5176–92.
Article
PubMed
PubMed Central
Google Scholar
Allan LA, Skowyra A, Rogers KI, Zeller D, Clarke PR. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 2018.
Clarke PR, Allan LA, Skowyra A. Timed degradation of Mcl-1 controls mitotic cell death. Mol Cell Oncol. 2018;5(6):e1516450.
Gao Y, Wen P, Chen B, Hu G, Wu L, Xu A, et al. Downregulation of cdc20 increases radiosensitivity through mcl-1/p-chk1-mediated DNA damage and apoptosis in tumor cells. Int J Mol Sci. 2020;21(18):6692.
Article
CAS
PubMed Central
Google Scholar
Zhao S, Zhang Y, Lu X, Ding H, Han B, Song X, et al. Cdc20 regulates the cell proliferation and radiosensitivity of p53 mutant hcc cells through the bcl-2/bax pathway. Int J Biol Sci. 2021;17:3608–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan L, Tan M, Yang J, Inuzuka H, Dai X, Wu T, et al. APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell. 2014;29:377–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichhorn JM, Sakurikar N, Alford SE, Chu R, Chambers TC. Critical role of anti-apoptotic Bcl-2 protein phosphorylation in mitotic death. Cell Death Dis. 2013;4:e834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bah N, Maillet L, Ryan J, Dubreil S, Gautier F, Letai A, et al. Bcl-xL controls a switch between cell death modes during mitotic arrest. Cell Death Dis. 2014;5:e1429.
Article
PubMed Central
Google Scholar
Kang K, Xie F, Wu Y, Han C, Bai Y, Long J, et al. Genomic instability in lower-grade glioma: prediction of prognosis based on lncRNA and immune infiltration. Mol Ther Oncolytics. 2021;22:431–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong C, Wang Z, Wang G, Zhang C, Jin S, Jiang G, et al. Identification of CDC20 as an immune infiltration-correlated prognostic biomarker in hepatocellular carcinoma. Investig New Drugs. 2021;39:1439–53.
Article
CAS
Google Scholar
Lai E, Tai Y, Jiang J, Zhao C, Xiao Y, Quan X, et al. Prognostic evaluation and immune infiltration analysis of five bioinformatic selected genes in hepatocellular carcinoma. J Cell Mol Med. 2021;25:11128–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Hong S, Tang Z, Yu H, Giam C-Z. HTLV-I tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc Natl Acad Sci. 2005;102:63–8.
Article
CAS
PubMed
Google Scholar
Jiang GJ, Chen YH, Guo W, Zhang H, Zou L. Screening and verification of key genes in T-cell acute lymphoblastic leukemia. Nan Fang Yi Ke Da Xue Xue Bao. 2018;38:261–7.
CAS
PubMed
Google Scholar
Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, et al. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer. 2019;125:712–25.
Article
CAS
PubMed
Google Scholar
Moison C, Lavallée VP, Thiollier C, Lehnertz B, Boivin I, Mayotte N, et al. Complex karyotype AML displays G2/M signature and hypersensitivity to PLK1 inhibition. Blood Adv. 2019;3:552–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ecker S, Pancaldi V, Rico D, Valencia A. Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia. Genome Med. 2015;7:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pittner BT, Shanafelt TD, Kay NE, Jelinek DF. CD38 expression levels in chronic lymphocytic leukemia B cells are associated with activation marker expression and differential responses to interferon stimulation. Leukemia. 2005;19:2264–72.
Article
CAS
PubMed
Google Scholar
Wang Q, Zhou HS, Huang KK, Jiang XJ, Wu FQ, Cao R, et al. Imatinib and bortezomib induce the expression and distribution of anaphase-promoting complex adaptor protein Cdh1 in blast crisis of chronic myeloid leukemia. Int J Oncol. 2012;40:418–26.
CAS
PubMed
Google Scholar
Sun C, Cheng X, Wang C, Wang X, Xia B, Zhang Y. Gene expression profiles analysis identifies a novel two-gene signature to predict overall survival in diffuse large B-cell lymphoma. Biosci Rep. 2019;39:BSR20181293.
Article
PubMed
PubMed Central
Google Scholar
Maes A, Maes K, De Raeve H, De Smedt E, Vlummens P, Szablewski V, et al. The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. Br J Cancer. 2019;120:1137–46.
Article
PubMed
PubMed Central
Google Scholar
Guo D, Wang H, Sun L, Liu S, Du S, Qiao W, et al. Identification of key gene modules and hub genes of human mantle cell lymphoma by coexpression network analysis. PeerJ. 2020;8:e8843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heredia FF, de Sousa JC, Ribeiro Junior HL, Carvalho AF, Magalhaes SMM, Pinheiro RF. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS. Leuk Res. 2014;38:218–24.
Article
CAS
PubMed
Google Scholar
Genga KR, Filho FDR, Ferreira FV de A, de Sousa JC, Studart FS, Magalhães SMM, et al. Proteins of the mitotic checkpoint and spindle are related to chromosomal instability and unfavourable prognosis in patients with myelodysplastic syndrome. J Clin Pathol. 2015;68:381–7.
Article
CAS
PubMed
Google Scholar
Borges D de P, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, et al. Prognostic importance of Aurora kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res. 2018;64:61–70.
Article
CAS
Google Scholar
Díaz-Rodríguez E, Álvarez-Fernández S, Chen X, Paiva B, López-Pérez R, García-Hernández JL, et al. Deficient spindle assembly checkpoint in multiple myeloma. PLoS One. 2011;6:e27583.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062–76.
Article
PubMed
Google Scholar
Yang Y, Gu C, Luo C, Li F, Wang M. BUB1B promotes multiple myeloma cell proliferation through CDC20/CCNB axis. Med Oncol. 2015;32:81.
Article
PubMed
CAS
Google Scholar
Crawford LJ, Anderson G, Johnston CK, Irvine AE. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma. Oncotarget. 2016;7:70481–93.
Article
PubMed
PubMed Central
Google Scholar
Wang S, Zhang Y, Soosairajah J, Kraft AS. Regulation of RUNX1/AML1 during the G2/M transition. Leuk Res. 2007;31:839–51.
Article
CAS
PubMed
Google Scholar
Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, et al. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability. Biochim Biophys Acta Mol cell Res. 2018;1865:105–16.
Article
CAS
PubMed
Google Scholar
Liu H, Cheng EH-Y, Hsieh JJ-D. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 2007;21:2385–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan X-F, Wu Y-L, Xu H-Z, Zhao M, Zhuang H-Y, Wang X-D, et al. Synergistic mitosis-arresting effects of arsenic trioxide and paclitaxel on human malignant lymphocytes. Chem Biol Interact. 2010;183:222–30.
Article
CAS
PubMed
Google Scholar
Jeang K-T, Giam C, Majone F, Aboud M. Life, death, and tax: role of HTLV-I Oncoprotein in genetic instability and cellular transformation. J Biol Chem. 2004;279:31991–4.
Article
CAS
PubMed
Google Scholar
Liu B, Liang M-H, Kuo Y-l, Liao W, Boros I, Kleinberger T, et al. Human T-Lymphotropic virus type 1 Oncoprotein tax promotes unscheduled degradation of Pds1p/Securin and Clb2p/Cyclin B1 and causes chromosomal instability. Mol Cell Biol. 2003;23:5269–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Li M, Feng Y, Sun F, Zhang L, Xu Y, et al. MDM2-P53 signaling pathway-mediated Upregulation of CDC20 promotes progression of human diffuse large B-cell lymphoma. Onco Targets Ther. 2020;13:10475–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen E, Lim MS, Rosic-Kablar S, Liu J, Jolicoeur P, Dubé ID, et al. Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-transgenic mice. Oncogene. 2006;25:2575–87.
Article
CAS
PubMed
Google Scholar
Bentley AM, Williams BC, Goldberg ML, Andres AJ. Phenotypic characterization of Drosophila ida mutants: defining the role of APC5 in cell cycle progression. J Cell Sci. 2002;115:949–61.
Article
CAS
PubMed
Google Scholar
Abdallah N, Rajkumar SV, Greipp P, Kapoor P, Gertz MA, Dispenzieri A, et al. Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer J. 2020;10:82.
Article
PubMed
PubMed Central
Google Scholar
Lub S, Maes A, Maes K, De Veirman K, Leleu X, Menu E, et al. Targeting the anaphase promoting complex/Cyclosome (APC/C) in multiple myeloma. Blood. 2014;124:2097.
Article
Google Scholar
Wang J, He N, Wang R, Tian T, Han F, Zhong C, et al. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep. 2020;10:2706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnerch D, Schmidts A, Follo M, Udi J, Felthaus J, Pfeifer D, et al. BubR1 is frequently repressed in acute myeloid leukemia and its re-expression sensitizes cells to antimitotic therapy. Haematologica. 2013;98:1886–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biggs JR, Peterson LF, Zhang Y, Kraft AS, Zhang D-E. AML1/RUNX1 phosphorylation by Cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol. 2006;26:7420–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Zhang F, Zhang Y, Li X, Chen C, Zhou M, et al. PPM1K regulates hematopoiesis and Leukemogenesis through CDC20-mediated Ubiquitination of MEIS1 and p21. Cell Rep. 2018;23:1461–75.
Article
CAS
PubMed
Google Scholar
Salsi V, Ferrari S, Gorello P, Fantini S, Chiavolelli F, Mecucci C, et al. NUP98 fusion oncoproteins promote aneuploidy by attenuating the mitotic spindle checkpoint. Cancer Res. 2014;74:1079–90.
Article
CAS
PubMed
Google Scholar
Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;25:530.
Article
CAS
Google Scholar
Salsi V, Fantini S, Zappavigna V. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding. Cell Cycle. 2016;15:2275–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sackton KL, Dimova N, Zeng X, Tian W, Zhang M, Sackton TB, et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature. 2014;514:646–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richeson KV, Bodrug T, Sackton KL, Yamaguchi M, Paulo JA, Gygi SP, et al. Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nat Chem Biol. 2020;16:546–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh D-C, et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell. 2010;18:382–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng X, King RW. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat Chem Biol. 2012;8:383–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood Am Soc Hematol. 2014;124:1790.
CAS
Google Scholar
De Lange J, Faramarz A, Oostra AB, De Menezes RX, Van Der Meulen IH, Rooimans MA, et al. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nat Commun. 2015;6:8399.
Article
PubMed
CAS
Google Scholar
Simonetti G, Boga C, Durante J, Micheletti G, Telese D, Caruana P, et al. Synthesis of novel tryptamine derivatives and their biological activity as antitumor agents. Molecules. 2021;26:683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang P, Le X, Huang F, Yang J, Yang H, Ma J, et al. Discovery of a dual tubulin polymerization and cell division cycle 20 homologue inhibitor via structural modification on Apcin. J Med Chem. 2020;63:4685–700.
Article
CAS
PubMed
Google Scholar
Raab M, Kobayashi NF, Becker S, Kurunci-Csacsko E, Krämer A, Strebhardt K, et al. Boosting the apoptotic response of high-grade serous ovarian cancers with CCNE1 amplification to paclitaxel in vitro by targeting APC/C and the pro-survival protein MCL-1. Int J Cancer. 2020;146:1086–98.
Article
CAS
PubMed
Google Scholar