Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Nalio Ramos R, Missolo-Koussou Y, Gerber-Ferder Y, Bromley CP, Bugatti M, Núñez NG, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell. 2022;185(7):1189–1207.e25.
Article
CAS
PubMed
Google Scholar
McGhee DE, Steele JR. Breast biomechanics: what do we really know? Physiology. 2020;35(2):144–56.
Article
PubMed
Google Scholar
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: implications in therapy resistance. Semin Cancer Biol. 2022;S1044–579X(22):00068–2.
Google Scholar
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.
Article
CAS
PubMed
Google Scholar
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn. 2018;18(3):227–43.
Article
CAS
PubMed
Google Scholar
Zhang J, Yang J, Zuo T, Ma S, Xokrat N, Hu Z, et al. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials. 2021;266:120429.
Article
CAS
PubMed
Google Scholar
Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue M-Z, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast Cancer. Clin Cancer Res. 2019;25(16):5002–14.
Article
CAS
PubMed
Google Scholar
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res. 2019;38(1):223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernasochi GB, Bell JR, Simpson ER, Delbridge LMD, Boon WC. Impact of estrogens on the regulation of white, beige, and brown adipose tissue depots. Compr Physiol. 2019;9(2):457–75.
Article
PubMed
Google Scholar
Nickel A, Blücher C, Kadri OA, Schwagarus N, Müller S, Schaab M, et al. Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci Rep. 2018;8(1):9482.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faria SS, Corrêa LH, Heyn GS, de Sant’Ana LP, das Almeida RN, Magalhães KG. Obesity and breast cancer: the role of crown-like structures in breast adipose tissue in tumor progression, prognosis, and therapy. J Breast Cancer. 2020;23(3):233–45.
Article
PubMed
PubMed Central
Google Scholar
Sakurai M, Miki Y, Takagi K, Suzuki T, Ishida T, Ohuchi N, et al. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment. Breast Cancer Res. 2017;19(1):70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, et al. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res. 2020;39(1):156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255–75.
Article
CAS
PubMed
Google Scholar
Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engin AB, Engin A, Gonul II. The effect of adipocyte–macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol. 2019;62(3):R201–22.
Article
CAS
PubMed
Google Scholar
Avril P, Vidal L, Barille-Nion S, Le Nail L-R, Redini F, Layrolle P, et al. Epinephrine infiltration of adipose tissue impacts MCF7 breast Cancer cells and Total lipid content. Int J Mol Sci. 2019;20(22):5626.
Article
CAS
PubMed Central
Google Scholar
Koc M, Wald M, Varaliová Z, Ondrůjová B, Čížková T, Brychta M, et al. Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors. Sci Rep. 2021;11(1):8171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and Cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown KA. Metabolic pathways in obesity-related breast cancer. Nat Rev Endocrinol. 2021;17(6):350–63.
Article
PubMed
CAS
Google Scholar
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97.
Article
PubMed
PubMed Central
Google Scholar
Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127–48.
Article
CAS
PubMed
Google Scholar
Kim HS, Jung M, Choi SK, Woo J, Piao YJ, Hwang EH, et al. IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res. 2018;37(1):200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene. 2009;28(30):2745–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Hong BS, Ryu HS, Lee H-B, Lee M, Park IA, et al. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. Ahmad A, editor. Plos One. 2017;12(3):e0174126.
Article
PubMed
PubMed Central
CAS
Google Scholar
He J-Y, Wei X-H, Li S-J, Liu Y, Hu H-L, Li Z-Z, et al. Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun Signal. 2018;16(1):100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doherty MR, Parvani JG, Tamagno I, Junk DJ, Bryson BL, Cheon HJ, et al. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Breast Cancer Res. 2019;21(1):54.
Article
PubMed
PubMed Central
Google Scholar
Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Broecke R, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014;74(23):6806–19.
Article
CAS
PubMed
Google Scholar
Gyamfi J, Lee Y-H, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8(1):8859.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gyamfi J, Lee YH, Min BS, Choi J. Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci Rep. 2019;9(1):1–14.
Article
CAS
Google Scholar
Kim E-S, Nam S-M, Song HK, Lee S, Kim K, Lim HK, et al. CCL8 mediates crosstalk between endothelial colony forming cells and triple-negative breast cancer cells through IL-8, aggravating invasion and tumorigenicity. Oncogene. 2021;40(18):3245–59.
Article
CAS
PubMed
Google Scholar
Welte G, Alt E, Devarajan E, Krishnappa S, Jotzu C, Song Y-H. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion. Mol Carcinog. 2012;51(11):861–8.
Article
CAS
PubMed
Google Scholar
Al-Khalaf HH, Al-Harbi B, Al-Sayed A, Arafah M, Tulbah A, Jarman A, et al. Interleukin-8 activates breast Cancer-associated adipocytes and promotes their angiogenesis- and tumorigenesis-promoting effects. Mol Cell Biol. 2019;39(2):e00332–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes promote early steps of breast cancer cell dissemination via Interleukin-8. Front Immunol. 2018;9:1767.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malik A, Kanneganti T-D. Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol Rev. 2018;281(1):124–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25(7):R421–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38(13):2351–63.
Article
CAS
PubMed
Google Scholar
Zhong X, Wang X, Sun Q. CCL2/ACKR2 interaction participate in breast cancer metastasis especially in patients with altered lipid metabolism. Med Hypotheses. 2022;158:110734.
Article
CAS
Google Scholar
Kadomoto S, Izumi K, Mizokami A. Roles of CCL2-CCR2 Axis in the tumor microenvironment. Int J Mol Sci. 2021;22(16):8530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 2015;150(2):255–63.
Article
CAS
PubMed
Google Scholar
Hsieh C-C, Huang Y-S. Aspirin breaks the crosstalk between 3T3-L1 Adipocytes and 4T1 breast cancer cells by regulating cytokine production. Tan M, editor. Plos One. 2016;11(1):e0147161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hsieh C-C, Wang C-H, Huang Y-S. Lunasin attenuates obesity-associated metastasis of 4T1 breast Cancer cell through anti-inflammatory property. Int J Mol Sci. 2016;17(12):2109.
Article
PubMed Central
CAS
Google Scholar
Liu Y, Tiruthani K, Wang M, Zhou X, Qiu N, Xiong Y, et al. Tumor-targeted gene therapy with lipid nanoparticles inhibits tumor-associated adipocytes and remodels the immunosuppressive tumor microenvironment in triple-negative breast cancer. Nanoscale Horizons. 2021;6(4):319–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast Cancer patients. Clin Cancer Res. 2006;12(15):4474–80.
Article
CAS
PubMed
Google Scholar
D’Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016;7(17):24495–509.
Article
PubMed
PubMed Central
Google Scholar
Song X, Zhou X, Qin Y, Yang J, Wang Y, Sun Z, et al. Emodin inhibits epithelial-mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC-chemokine ligand 5 secreted from adipocytes. Int J Mol Med. 2018;42(1):579–88.
CAS
PubMed
Google Scholar
Mutgan AC, Besikcioglu HE, Wang S, Friess H, Ceyhan GO, Demir IE. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol Cancer. 2018;17(1):66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in overcoming resistance in breast cancer. Front Cell Dev Biol. 2021;9:641449.
Article
PubMed
PubMed Central
Google Scholar
Bowers LW, Brenner AJ, Hursting SD, Tekmal RR, DeGraffenried LA. Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res Treat. 2015;149(1):49–57.
Article
CAS
PubMed
Google Scholar
Wang C, Gao C, Meng K, Qiao H, Wang Y. Human Adipocytes stimulate invasion of breast cancer MCF-7 Cells by Secreting IGFBP-2. St-Pierre Y, editor. Plos One. 2015;10(3):e0119348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang M, Liu J, Liu G, Xing Z, Jia Z, Li J, et al. Anti-vascular endothelial growth factor therapy in breast cancer: molecular pathway, potential targets, and current treatment strategies. Cancer Lett. 2021;520:422–33.
Article
CAS
PubMed
Google Scholar
Dent SF. The role of VEGF in triple-negative breast cancer: where do we go from here? Ann Oncol. 2009;20(10):1615–7.
Article
CAS
PubMed
Google Scholar
Bougaret L, Delort L, Billard H, Lequeux C, Goncalves-Mendes N, Mojallal A, et al. Supernatants of adipocytes from obese versus normal weight women and breast Cancer cells: in vitro impact on angiogenesis. J Cell Physiol. 2017;232(7):1808–16.
Article
CAS
PubMed
Google Scholar
Paino F, La Noce M, Di Nucci D, Nicoletti GF, Salzillo R, De Rosa A, et al. Human adipose stem cell differentiation is highly affected by cancer cells both in vitro and in vivo: implication for autologous fat grafting. Cell Death Dis. 2018;8(1):e2568.
Article
CAS
Google Scholar
Hiraga T, Ito S, Mizoguchi T. Opposing effects of granulocyte Colony-stimulating factor on the initiation and progression of breast Cancer bone metastases. Mol Cancer Res. 2021;19(12):2110–9.
Article
CAS
PubMed
Google Scholar
Liu L, Wu Y, Zhang C, Zhou C, Li Y, Zeng Y, et al. Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol. 2020;12(9):723–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Estevez L, González-Martínez S, Moreno-Bueno G. The leptin Axis and its association with the adaptive immune system in breast Cancer. Front Immunol. 2021;12:784823.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr. 2020;60(22):3770–92.
Article
PubMed
CAS
Google Scholar
Zhang C, Yue C, Herrmann A, Song J, Egelston C, Wang T, et al. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 2020;31(1):148–161.e5.
Article
CAS
PubMed
Google Scholar
Cao H, Huang Y, Wang L, Wang H, Pang X, Li K, et al. Leptin promotes migration and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages. Oncotarget. 2016;7(40):65441–53.
Article
PubMed
PubMed Central
Google Scholar
Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, Castañeda-Saucedo E, Mendoza-Catalán MÁ, Ortuño-Pineda C, et al. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect. 2019;8(11):1539–52.
Article
PubMed
PubMed Central
Google Scholar
Kim HG, Jin SW, Kim YA, Khanal T, Lee GH, Kim SJ, et al. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells. Food Chem Toxicol. 2017;106(Pt A):232–41.
Article
CAS
PubMed
Google Scholar
Wei L, Li K, Pang X, Guo B, Su M, Huang Y, et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res. 2016;35(1):166.
Article
PubMed
PubMed Central
CAS
Google Scholar
Strong AL, Ohlstein JF, Biagas BA, Rhodes LV, Pei DT, Tucker HA, et al. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 2015;17(1):112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mauro L, Naimo GD, Ricchio E, Panno ML, Andò S. Cross-talk between adiponectin and IGF-IR in breast Cancer. Front Oncol. 2015;5:157.
Article
PubMed
PubMed Central
Google Scholar
Andò S, Naimo GD, Gelsomino L, Catalano S, Mauro L. Novel insights into adiponectin action in breast cancer: evidence of its mechanistic effects mediated by ERα expression. Obes Rev. 2020;21(5):e13004.
Article
PubMed
CAS
Google Scholar
Macis D, Guerrieri-Gonzaga A, Gandini S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. Int J Epidemiol. 2014;43(4):1226–36.
Article
PubMed
PubMed Central
Google Scholar
Gnerlich JL, Yao KA, Fitchev PS, Goldschmidt RA, Bond MC, Cornwell M, et al. Peritumoral expression of Adipokines and fatty acids in breast Cancer. Ann Surg Oncol. 2013;20(S3):731–8.
Article
Google Scholar
Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;13(8):1386–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP. Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer. 2008;98(2):370–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taliaferro-Smith L, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia. 2013;15(1):23–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Li M, Yin N, Zhang J. The expression regulation and biological function of Autotaxin. Cells. 2021;10(4):939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid R, Wolf K, Robering JW, Strauß S, Strissel PL, Strick R, et al. ADSCs and adipocytes are the main producers in the autotaxin–lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer. 2018;18(1):1273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benesch MGK, Tang X, Dewald J, Dong W-F, Mackey JR, Hemmings DG, et al. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J. 2015;29(9):3990–4000.
Article
CAS
PubMed
Google Scholar
Volden PA, Skor MN, Johnson MB, Singh P, Patel FN, McClintock MK, et al. Mammary adipose tissue-derived lysophospholipids promote estrogen receptor–negative mammary epithelial cell proliferation. Cancer Prev Res. 2016;9(5):367–78.
Article
CAS
Google Scholar
Cha YJ, Koo JS. Expression of Autotaxin-Lysophosphatidate signaling-related proteins in breast Cancer with adipose stroma. Int J Mol Sci. 2019;20(9):2102.
Article
CAS
PubMed Central
Google Scholar
Lee Y-C, Chen Y-J, Wu C-C, Lo S, Hou M-F, Yuan S-SF. Resistin expression in breast cancer tissue as a marker of prognosis and hormone therapy stratification. Gynecol Oncol. 2012;125(3):742–50.
Article
CAS
PubMed
Google Scholar
Rosendahl AH, Bergqvist M, Lettiero B, Kimbung S, Borgquist S. Adipocytes and obesity-related conditions jointly promote breast cancer cell growth and motility: associations with CAP1 for prognosis. Front Endocrinol (Lausanne). 2018;9:689.
Article
Google Scholar
Wang CH, Wang PJ, Hsieh YC, Lo S, Lee YC, Chen YC, et al. Resistin facilitates breast cancer progression via TLR4- mediated induction of mesenchymal phenotypes and stemness properties. Oncogene. 2018;37(5):589–600.
Article
CAS
PubMed
Google Scholar
Lee JO, Kim N, Lee HJ, Lee YW, Kim SJ, Park SH, et al. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep. 2016;6(1):18923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Chen X, He Q, Gimple RC, Liao Y, Wang L, et al. Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of Resistin. Proc Natl Acad Sci. 2020;117(52):33295–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y-Y, Hung AC, Lo S, Yuan S-SF. Adipocytokines visfatin and resistin in breast cancer: clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett. 2021;498:229–39.
Article
CAS
PubMed
Google Scholar
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau P-H, Froment P, et al. Involvement of novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in reproductive functions in Normal and pathological conditions in humans and animal models. Int J Mol Sci. 2019;20(18):4431.
Article
CAS
PubMed Central
Google Scholar
Hung AC, Lo S, Hou M-F, Lee Y-C, Tsai C-H, Chen Y-Y, et al. Extracellular Visfatin-promoted malignant behavior in breast cancer is mediated through c-Abl and STAT3 activation. Clin Cancer Res. 2016;22(17):4478–90.
Article
CAS
PubMed
Google Scholar
Kim JG, Kim EO, Jeong BR, Min YJ, Park JW, Kim ES, et al. Lee BJ. Visfatin stimulates proliferation of MCF-7 human breast cancer cells. Mol Cells. 2010;30(4):341–5.
Article
PubMed
CAS
Google Scholar
Behrouzfar K, Alaee M, Nourbakhsh M, Gholinejad Z, Golestani A. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem Funct. 2017;35(6):327–33.
Article
CAS
PubMed
Google Scholar
Wang Y-Y, Chen H-D, Lo S, Chen Y-K, Huang Y-C, Hu SC-S, et al. Visfatin enhances breast cancer progression through CXCL1 induction in tumor-associated macrophages. Cancers (Basel). 2020;12(12):3526.
Article
CAS
Google Scholar
Huang J-Y, Wang Y-Y, Lo S, Tseng L-M, Chen D-R, Wu Y-C, et al. Visfatin mediates malignant behaviors through adipose-derived stem cells intermediary in breast cancer. Cancers (Basel). 2019;12(1):29.
Article
PubMed Central
CAS
Google Scholar
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem. 2017;118(11):3531–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren F, Tang R, Zhang X, Madushi WM, Luo D, Dang Y, et al. Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: a systematic review and meta-analysis. Ahmad A, editor. Plos One. 2015;10(8):e0135544.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leitner L, Jürets A, Itariu BK, Keck M, Prager G, Langer F, et al. Osteopontin promotes aromatase expression and estradiol production in human adipocytes. Breast Cancer Res Treat. 2015;154(1):63–9.
Article
CAS
PubMed
Google Scholar
Milek M, Moulla Y, Kern M, Stroh C, Dietrich A, Schön MR, et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. Int J Mol Sci. 2022;23(4):2222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goto H, Shimono Y, Funakoshi Y, Imamura Y, Toyoda M, Kiyota N, et al. Adipose-derived stem cells enhance human breast cancer growth and cancer stem cell-like properties through adipsin. Oncogene. 2019;38(6):767–79.
Article
CAS
PubMed
Google Scholar
Mizuno M, Khaledian B, Maeda M, Hayashi T, Mizuno S, Munetsuna E, et al. Adipsin-dependent secretion of hepatocyte growth factor regulates the adipocyte-cancer stem cell interaction. Cancers (Basel). 2021;13(16):4238.
Article
CAS
Google Scholar
Rikitake Y. The apelin/APJ system in the regulation of vascular tone: friend or foe? J Biochem. 2021;169(4):383–6.
Article
CAS
PubMed
Google Scholar
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci. 2020;65(1):202–13.
Article
PubMed
Google Scholar
Gourgue F, Mignion L, Van Hul M, Dehaen N, Bastien E, Payen V, et al. Obesity and triple-negative-breast-cancer: is apelin a new key target? J Cell Mol Med. 2020;24(17):10233–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gourgue F, Derouane F, van Marcke C, Villar E, Dano H, Desmet L, et al. Tumor apelin and obesity are associated with reduced neoadjuvant chemotherapy response in a cohort of breast cancer patients. Sci Rep. 2021;11(1):9922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Li L, Yang M, Luo X, Ran W, Liu D, et al. Circulating Sfrp5 is a signature of obesity-related metabolic disorders and is regulated by glucose and Liraglutide in humans. J Clin Endocrinol Metab. 2013;98(1):290–8.
Article
CAS
PubMed
Google Scholar
Zhou W, Ye C, Li L, Liu L, Wang F, Yu L, et al. Adipocyte-derived SFRP5 inhibits breast cancer cells migration and invasion through Wnt and epithelial-mesenchymal transition signaling pathways. Chinese J Cancer Res. 2020;32(3):347–60.
Article
CAS
Google Scholar
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5:1.
Article
PubMed
PubMed Central
Google Scholar
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2017;2(4):e87489.
Article
PubMed
PubMed Central
Google Scholar
Balaban S, Lee LS, Varney B, Aishah A, Gao Q, Shearer RF, et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis. Mol Oncol. 2018;12(9):1623–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaoui M, Morel M, Ferrand N, Fellahi S, Bastard J-P, Lamazière A, et al. Breast-associated adipocytes Secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel). 2019;11(12):2012.
Article
CAS
Google Scholar
Byon CH, Hardy RW, Ren C, Ponnazhagan S, Welch DR, McDonald JM, et al. Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab Investig. 2009;89(11):1221–8.
Article
CAS
PubMed
Google Scholar
Kim HM, Lee YK, Kim ES, Koo JS. Energy transfer from adipocytes to cancer cells in breast cancer. Neoplasma. 2020;67(05):992–1001.
Article
CAS
PubMed
Google Scholar
Bellanger D, Dziagwa C, Guimaraes C, Pinault M, Dumas J-F, Brisson L. Adipocytes promote breast cancer cell survival and migration through autophagy activation. Cancers (Basel). 2021;13(15):3917.
Article
CAS
Google Scholar
Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):42–52.
Article
CAS
PubMed
Google Scholar
Huang C-K, Chang P-H, Kuo W-H, Chen C-L, Jeng Y-M, Chang K-J, et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat Commun. 2017;8(1):14706.
Article
PubMed
PubMed Central
Google Scholar
Bu D, Crewe C, Kusminski CM, Gordillo R, Ghaben AL, Kim M, et al. Human endotrophin as a driver of malignant tumor growth. JCI Insight. 2019;4(9):e125094.
Article
PubMed Central
Google Scholar
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D, Wang X, Han Y, Wang Y. The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model. BMC Genomics. 2021;22(1):892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drew BG, Hamidi H, Zhou Z, Villanueva CJ, Krum SA, Calkin AC, et al. Estrogen receptor (ER)α-regulated Lipocalin 2 expression in adipose tissue links obesity with breast Cancer progression. J Biol Chem. 2015;290(9):5566–81.
Article
CAS
PubMed
Google Scholar
Wagner M, Bjerkvig R, Wiig H, Dudley AC. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocyte. 2013;2(3):176–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadav NVS, Barcikowski A, Uehana Y, Jacobs AT, Connelly L. Breast adipocyte co-culture increases the expression of pro-angiogenic factors in macrophages. Front Oncol. 2020;10:454.
Article
PubMed
PubMed Central
Google Scholar
Lin L, Kuhn C, Ditsch N, Kolben T, Czogalla B, Beyer S, et al. Breast adipose tissue macrophages (BATMs) have a stronger correlation with breast cancer survival than breast tumor stroma macrophages (BTSMs). Breast Cancer Res. 2021;23(1):45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated Cancer. Clin Cancer Res. 2013;19(22):6074–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res. 2011;4(3):329–46.
Article
CAS
Google Scholar
Zhao Y-X, Sun Y-L, Ye J-H, Zhang Y, Shi X-B, Wang J-M, et al. The relationship between white adipose tissue inflammation and overweight/obesity in Chinese female breast Cancer: a retrospective study. Adv Ther. 2020;37(6):2734–47.
Article
CAS
PubMed
Google Scholar
Chang MC, Eslami Z, Ennis M, Goodwin PJ. Crown-like structures in breast adipose tissue of breast cancer patients: associations with CD68 expression, obesity, metabolic factors and prognosis. NPJ Breast Cancer. 2021;7(1):97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santander A, Lopez-Ocejo O, Casas O, Agostini T, Sanchez L, Lamas-Basulto E, et al. Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel). 2015;7(1):143–78.
Article
CAS
Google Scholar
Li K, Wei L, Huang Y, Wu Y, Su M, Pang X, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48(6):2479–87.
Article
CAS
PubMed
Google Scholar
Cha YJ, Kim E-S, Koo JS. Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer. Breast Cancer Res Treat. 2018;170(1):15–25.
Article
CAS
PubMed
Google Scholar
Rybinska I, Mangano N, Tagliabue E, Triulzi T. Cancer-associated adipocytes in breast Cancer: causes and consequences. Int J Mol Sci. 2021;22(7):3775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robado de Lope L, Alcíbar OL, Amor López A, Hergueta-Redondo M, Peinado H. Tumour–adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc B Biol Sci. 2018;373(1737):20160485.
Article
CAS
Google Scholar
Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 2019;15(12):731–43.
Article
CAS
PubMed
Google Scholar
Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77(3):447–54.
Article
CAS
PubMed
Google Scholar
Jafari N, Kolla M, Meshulam T, Shafran JS, Qiu Y, Casey AN, et al. Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes. Sci Signal. 2021;14(710):eabj2807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013;383(1–2):13–20.
Article
CAS
PubMed
Google Scholar
Wang S, Su X, Xu M, Xiao X, Li X, Li H, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of hippo signaling pathway. Stem Cell Res Ther. 2019;10(1):117.
Article
PubMed
PubMed Central
Google Scholar
Gernapudi R, Yao Y, Zhang Y, Wolfson B, Roy S, Duru N, et al. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat. 2015;150(3):685–95.
Article
PubMed
PubMed Central
Google Scholar
Assiri AMA, Kamel HFM, Hassanien MFR. Resistin, Visfatin, adiponectin, and leptin: risk of breast Cancer in pre- and postmenopausal Saudi females and their possible diagnostic and predictive implications as novel biomarkers. Dis Markers. 2015;2015:1–9.
Article
CAS
Google Scholar
Assiri AMA, Kamel HFM. Evaluation of diagnostic and predictive value of serum adipokines: leptin, resistin and visfatin in postmenopausal breast cancer. Obes Res Clin Pract. 2016;10(4):442–53.
Article
PubMed
Google Scholar
Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast Cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53.
Article
CAS
PubMed
Google Scholar
Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237(1):109–14.
Article
CAS
PubMed
Google Scholar
Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knüchel R, et al. Epigenetic inactivation of the secreted frizzled-related protein-5 ( SFRP5 ) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis. 2008;29(5):991–8.
Article
CAS
PubMed
Google Scholar
Laforest S, Ennour-Idrissi K, Ouellette G, Gauthier M-F, Michaud A, Durocher F, et al. Associations between markers of mammary adipose tissue dysfunction and breast cancer prognostic factors. Int J Obes. 2021;45(1):195–205.
Article
CAS
Google Scholar
Yamaguchi J, Ohtani H, Nakamura K, Shimokawa I, Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am J Clin Pathol. 2008;130(3):382–8.
Article
PubMed
Google Scholar
Calligaris D, Caragacianu D, Liu X, Norton I, Thompson CJ, Richardson AL, et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc Natl Acad Sci. 2014;111(42):15184–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Melatonin interferes in the desmoplastic reaction in breast cancer by regulating cytokine production. J Pineal Res. 2012;52(3):282–90.
Article
PubMed
CAS
Google Scholar
Bougaret L, Delort L, Billard H, Le Huede C, Boby C, De la Foye A, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen. Plos One. 2018;13(2):e0191571.
Article
PubMed
PubMed Central
CAS
Google Scholar
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med. 2018;10(432):eaag0945.
Gelsomino L, Giordano C, La Camera G, Sisci D, Marsico S, Campana A, et al. Leptin signaling contributes to aromatase inhibitor resistant breast cancer cell growth and activation of macrophages. Biomolecules. 2020;10(4):543.
Article
CAS
PubMed Central
Google Scholar
Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, et al. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol. 2013;7(3):379–91.
Article
CAS
PubMed
Google Scholar
Delort L, Bougaret L, Cholet J, Vermerie M, Billard H, Decombat C, et al. Hormonal therapy resistance and breast cancer: involvement of adipocytes and leptin. Nutrients. 2019;11(12):2839.
Article
PubMed Central
Google Scholar
Meng G, Tang X, Yang Z, Benesch MGK, Marshall A, Murray D, et al. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J. 2017;31(9):4064–77.
Article
CAS
PubMed
Google Scholar
Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast Cancer stem cell self-renewal and Chemoresistance. Cell Metab. 2018;27(6):1357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mentoor I, Engelbrecht A-M, van de Vyver M, van Jaarsveld PJ, Nell T. The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte. 2021;10(1):505–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adriá-Cebrián J, Guaita-Esteruelas S, Lam EW-F, Rodríguez-Balada M, Capellades J, Girona J, et al. MCF-7 drug resistant cell lines switch their lipid metabolism to triple negative breast Cancer signature. Cancers (Basel). 2021;13(23):5871.
Article
CAS
Google Scholar
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, et al. Role of oleic acid in the gut-liver Axis: from diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients. 2019;11(10):2283.
Article
CAS
PubMed Central
Google Scholar
Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. Plos One. 2014;9(5):e97330.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment. Expert Opin Ther Targets. 2018;22(11):941–53.
Article
CAS
PubMed
Google Scholar
Razmkhah M, Jaberipour M, Hosseini A, Safaei A, Khalatbari B, Ghaderi A. Expression profile of IL-8 and growth factors in breast cancer cells and adipose-derived stem cells (ASCs) isolated from breast carcinoma. Cell Immunol. 2010;265(1):80–5.
Article
CAS
PubMed
Google Scholar
Morad V, Abrahamsson A, Kjölhede P, Dabrosin C. Adipokines and vascular endothelial growth factor in Normal human breast tissue in vivo - correlations and attenuation by dietary flaxseed. J Mammary Gland Biol Neoplasia. 2016;21(1–2):69–76.
Article
PubMed
PubMed Central
Google Scholar
Vijay J, Gauthier M-F, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, et al. Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nat Metab. 2020;2(1):97–109.
Article
PubMed
Google Scholar
Deutsch A, Feng D, Pessin JE, Shinoda K. The impact of Single-cell genomics on adipose tissue research. Int J Mol Sci. 2020;21(13):4773.
Article
CAS
PubMed Central
Google Scholar