Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125:3335–7.
Article
PubMed
PubMed Central
Google Scholar
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.
Article
CAS
PubMed
Google Scholar
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.
Article
PubMed
CAS
PubMed Central
Google Scholar
Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, et al. Programmed Death-Ligand 1 expression and response to the anti-programmed Death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34:4102–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferris RL, Blumenschein GJ, Fayette J, Guigay J, Colevas AD, Harrington L. LK, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.
Pitt JM, Ve ́ tizou M, Daille` re R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.
Article
CAS
PubMed
Google Scholar
Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77:817–22.
Article
CAS
PubMed
Google Scholar
Melief CJM, Van Hall T, Arens R, Ossendorp F, Van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401–12.
Article
PubMed
PubMed Central
Google Scholar
Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–24.
Article
CAS
PubMed
Google Scholar
Rosenberg SA, Yang JC, Restifo NP. Cancer Immunotherapy: Moving beyond current vaccines. Nat Med. 2004;10:909–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014. https://doi.org/10.1016/S1470-2045(13)70585-0.
Article
PubMed
Google Scholar
Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, et al. Trial Watch: radioimmunotherapy for oncological indications. Oncoimmunology. 2014. https://doi.org/10.4161/21624011.2014.954929.
Article
PubMed
PubMed Central
Google Scholar
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: peptide-based vaccines in anticancer therapy. Oncoimmunology. 2018;7(12):e1511506.
Article
PubMed
PubMed Central
Google Scholar
Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16:1092–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68.
Article
CAS
PubMed
Google Scholar
Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31:2396–403.
Article
CAS
PubMed
Google Scholar
Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccineGV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.
Article
CAS
PubMed
Google Scholar
Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–35.
Article
CAS
PubMed
Google Scholar
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.
Article
CAS
PubMed
Google Scholar
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT00796445.
Aarntzen EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, et al. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 2013;73:19–29.
Article
CAS
PubMed
Google Scholar
Wimmers F, Schreibelt G, Sköld AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00165.
Article
PubMed
PubMed Central
Google Scholar
Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17:563–70.
Article
CAS
PubMed
Google Scholar
Alexander P, Delorme EJ, HALL JG. The effect of lymphoid cells from the lymph of specifically immunized sheep on the growth of primary sarcomata in rats. Lancet. 1966;287:1186–9.
Katz DH, Ellman L, Paul WE, Green I, Benacerra B. Resistance of Guinea Pigs to Leukemia following transfer of immunocompetent allogeneic lymphoid cells. Cancer Res. 1972;32:133–40.
CAS
PubMed
Google Scholar
Fefer A. Treatment of a moloney lymphoma with cyclophosphamide and H-2-incompatible spleen cells. Cancer Res. 1973;33:641–4.
CAS
PubMed
Google Scholar
Kondo M, McCarty MF. Rationale for a novel immunotherapy of cancer with allogeneic lymphocyte infusion. Med Hypotheses. 1984;15:241–77.
Article
CAS
PubMed
Google Scholar
Porter DL, Connors JM, Van Deerlin VMD, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol. 1999;17:1234–43.
Article
CAS
PubMed
Google Scholar
Strair RK, Schaar D, Medina D, Todd MB, Aisner J, DiPaola RS, et al. Antineoplastic effects of partially HLA-matched irradiated blood mononuclear cells in patients with renal cell carcinoma. J Clin Oncol. 2003;21:3785–91.
Article
PubMed
Google Scholar
Ballenn KK, Becker PS, Emmons RVB, Fitzgerald TJ, Hsieh CC, Liu Q, et al. Low-dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood. 2002;100:442–50.
Article
Google Scholar
Su X, Guo S, Zhou C, Wang D, Ma W, Zhang S. A simple and effective method for cancer immunotherapy by inactivated allogeneic leukocytes infusion. Int J Cancer. 2009;124:1142–51.
Article
CAS
PubMed
Google Scholar
Symons HJ, Levy MY, Wang J, Zhou X, Zhou G, Cohen SE, et al. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008;14:499–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Har-Noy M, Zeira M, Weiss L, Fingerut E, Or R, Slavin S. Allogeneic CD3/CD28 cross-linked Th1 memory cells provide potent adjuvant effects for active immunotherapy of leukemia/lymphoma. Leuk Res. 2009;33:525–38.
Article
CAS
PubMed
Google Scholar
Janikashvili N, LaCasse CJ, Larmonier C, Trad M, Herrell A, Bustamante S, et al. Allogeneic effector/memory Th-1 cells impair FoxP3 regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood. 2011;117:1555–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi G, Zhou C, Wang D, Ma W, Liu B, Zhang S. Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes. Cancer Lett. 2014;343:42–50.
Article
CAS
PubMed
Google Scholar
Tang Y, Ma W, Zhou C, Wang D, Zhang S. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity. J Chin Med Assoc. 2018;81:316–23.
Article
PubMed
Google Scholar
Mochizuki K, Meng L, Mochizuki I, Tong Q, He S, Liu Y, et al. Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice. Blood. 2016;127:3270–80.
Meng L, Bai Z, He S, Mochizuki K, Liu L, Purushe J, et al. The notch ligand DLL4 defines a capability of human dendritic cells in regulating Th1 and Th17 differentiation. J Immunol. 2016;196:1070–80.
Article
CAS
PubMed
Google Scholar
Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ. Immunotherapy of malignancy by emopenin vivoemclose gene transfer into tumors. Proc Natl Acad Sci U S A. 1993;90:4645–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A. 1996;93:15388–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW, et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer. 2004;109:685–90.
Article
CAS
PubMed
Google Scholar
Rozera C, Cappellini CA, D’Agostino G, Santodonato L, Castiello L, Urbani F, et al. Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. J Transl Med. 2015;13:139.
Article
PubMed
PubMed Central
Google Scholar
Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112:4371–83.
Article
CAS
PubMed
Google Scholar
Robert S. Negrin. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:225–30.
Article
Google Scholar
Blazar BR, Hill GR, Murphy WJ. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol. 2020;17:475–92.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior Graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high- risk acute leukemia: an historic comparison. Biol Blood Marrow Transplant. 2011;17:821–30.
Article
PubMed
Google Scholar
Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia. 2020;34:1433–43.
Article
CAS
PubMed
Google Scholar
Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–5.
Article
CAS
PubMed
Google Scholar
Reddyy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JLM. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia response. Nat Med. 2005;11:1244–9.
Article
CAS
Google Scholar
Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 2017;9:347–60.
Article
CAS
PubMed
Google Scholar
Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.
Article
CAS
PubMed
Google Scholar
Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med. 1983;157:613–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banchereau J, Briere JF, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.
Article
CAS
PubMed
Google Scholar
Bilate AM, Lafaille JJ. Induced CD4 + Foxp3 + regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733–58.
Article
CAS
PubMed
Google Scholar
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.
Article
CAS
PubMed
Google Scholar
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the Tumor Immune Microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 cancer immunotherapy requires T Cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8 + memory T cells. Nature. 2006;441:890–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell DM, Ravkov EV, Williams MA. Distinct Roles for IL-2 and IL-15 in the Differentiation and survival of CD8 + effector and memory T Cells. J Immunol. 2010;184:6719–30.
Article
CAS
PubMed
Google Scholar
Khong HT, Wang QJ, Rosenberg SA. Identification of Multiple Antigens Recognized by Tumor- Infiltrating Lymphocytes From a Single Patient: Tumor Escape by Antigen Loss and Loss of MHC Expression. J Immunother. 2004;27:184–90.
Article
PubMed
PubMed Central
Google Scholar
Grzywa TM, SosnowskaMatryba A, Rydzynska P, Jasinski Z, Nowis M. D, et al. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol. 2020;1:11:938. doi:https://doi.org/10.3389/fimmu.2020.00938.
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses. Cancer Res. 2004;64:5839–49.
Article
CAS
PubMed
Google Scholar
Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–43.
Article
PubMed
CAS
PubMed Central
Google Scholar
Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.
Article
CAS
PubMed
Google Scholar
Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851:414–21.
Article
CAS
PubMed
Google Scholar
Hosono K, Isonaka R, Kawakami T, Narumiya S, Majima M. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice. PLoS One. 2016;11:e0162532. https://doi.org/10.1371/journal.pone.0162532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harada Y, Okada-Nakanishi Y, Ueda Y, Tsujitani S, Saito S, Fuji-Ogawa T, et al. Cytokine-based high log-scale expansion of functional human dendritic cells from cord-blood CD34-positive cells. Sci Rep. 2011. https://doi.org/10.1038/srep00174.
Article
PubMed
PubMed Central
Google Scholar
Bedke N, Swindle EJ, Molnar C, Holt PG, Strickland DH, Roberts GC, et al. A method for the generation of large numbers of dendritic cells from CD34 + hematopoietic stem cells from cord blood. J Immunol Methods. 2020. https://doi.org/10.1016/j.jim.2019.112703.
Article
PubMed
PubMed Central
Google Scholar
Hu KX, Du X, Guo M, Yu CL, Qiao JH, Sun QY, et al. Comparative study of micro-transplantation from HLA fully mismatched unrelated and partly matched related donors in acute myeloid leukemia. Am J Hematol. 2020;95:630–6.
Article
CAS
PubMed
Google Scholar
Guo M, Hu KX, Yu CL, Sun QY, Qiao JH, Wang DH, et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood. 2011;17:936–41.
Article
CAS
Google Scholar
Guo M, Hu KX, Liu GX, Yu CL, Qiao JH, Sun QY, et al. HLA-mismatched stem-cell microtransplantation as postremission therapyfor acute myeloid leukemia: long-term follow-up. J Clin Oncol. 2012;30:4084–90.
Article
PubMed
Google Scholar
Guo M, Chao NJ, Li JY, Rizzieri DA, Sun QY, Mohrbacher A, et al. HLA-Mismatched Microtransplant in Older Patients Newly Diagnosed With Acute Myeloid Leukemia: Results From the Microtransplantation Interest Group. JAMA Oncol. 2018;4:54–62.
Article
PubMed
Google Scholar