Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374:324–39.
Article
PubMed
Google Scholar
Voelker R. Combination approved for advanced multiple myeloma. JAMA. 2019;322:393.
PubMed
Google Scholar
Wilcock P, Webster R. The multiple myeloma drug market. Nat Rev Drug Discov. 2019;18:579–80.
Article
CAS
PubMed
Google Scholar
Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet. 2015;385:2197–208.
Article
PubMed
Google Scholar
Wang W, Zhang C, Li Z, Gong M, Ma Y. Detection of intracellular IgD using flow cytometry could be a novel and supplementary method to diagnose IgD multiple myeloma. BMC Cancer. 2018;18:650.
Article
PubMed
PubMed Central
Google Scholar
Kim M, Suh C, Lee D, Min C, Kim S, Kim K, et al. Immunoglobulin D multiple myeloma: response to therapy, survival, and prognostic factors in 75 patients. Ann Oncol. 2011;22:411–6.
Article
CAS
PubMed
Google Scholar
Morris C, Iacobelli S, Gahrton G, van Biezen A, Drake M, Garderet L, et al. Efficacy and outcome of allogeneic transplantation in IgD and nonsecretory myeloma. A report on behalf of the myeloma Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21:1054–8.
Article
PubMed
Google Scholar
Morris C, Drake M, Apperley J, Iacobelli S, van Biezen A, Bjorkstrand B, et al. Efficacy and outcome of autologous transplantation in rare myelomas. Haematologica. 2010;95:2126–33.
Article
PubMed
PubMed Central
Google Scholar
Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:157496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Federico C, Alhallak K, Sun J, Duncan K, Azab F, Sudlow GP, et al. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nat Commun. 2020;11:6037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–38.
Article
CAS
PubMed
Google Scholar
Terpos E, Ntanasis-Stathopoulos I, Dimopoulos MA. Myeloma bone disease: from biology findings to treatment approaches. Blood. 2019;133:1534–9.
Article
CAS
PubMed
Google Scholar
Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. 2017;129:2429–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi L, Liu B, Shen D, Yan P, Zhang Y, Tian Y, Hou L, Jiang G, Zhu Y, Liang Y, et al. A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. Science advances. 2021;7:13.
Wang L, Zhou Y, Jiang L, Lu L, Dai T, Li A, et al. CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway. Mol Cancer. 2021;20:43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, et al. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol. 2021;14:41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from Cancer-associated chromosomal translocations. Cell. 2016;165:289–302.
Article
CAS
PubMed
Google Scholar
Fan Y, Wang J, Jin W, Sun Y, Xu Y, Wang Y, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20:25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Liu C, Bi Z, Zhou Q, Zhang H, Li L, et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer. 2020;19:102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Huang N, Yang X, Luo J, Zhang N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37:1805-14.
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20:66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer. 2020;19:142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. Correction to: a novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 2019;18:149.
Article
PubMed
PubMed Central
Google Scholar
Liang W, Wong C, Liang P, Shi M, Cao Y, Rao S, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84.
Article
PubMed
PubMed Central
Google Scholar
Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543–53.
Article
CAS
PubMed
Google Scholar
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19:13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Guan D, Lei L, Lu J, Liu JQ, Yang G, et al. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol Appl Pharmacol. 2018;341:98–105.
Article
CAS
PubMed
Google Scholar
Gagliardi M, Matarazzo MR. RIP: RNA Immunoprecipitation. Methods Mol Biol. 2016;1480:73–86.
Article
CAS
PubMed
Google Scholar
Kim MK, Suh C, Lee DH, Min CK, Kim SJ, Kim K, et al. Immunoglobulin D multiple myeloma: response to therapy, survival, and prognostic factors in 75 patients. Ann Oncol. 2011;22:411–6.
Article
CAS
PubMed
Google Scholar
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 2019;18:131.
Article
PubMed
PubMed Central
Google Scholar
Helbig R, Fackelmayer FO. Scaffold attachment factor a (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma. 2003;112:173–82.
Article
CAS
PubMed
Google Scholar
Hadian K, Vincendeau M, Mausbacher N, Nagel D, Hauck SM, Ueffing M, et al. Identification of a heterogeneous nuclear ribonucleoprotein-recognition region in the HIV rev protein. J Biol Chem. 2009;284:33384–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Wang HY, Zhao DX, Wang DX, Zeng Q, Xi JF, et al. The splicing regulatory factor hnRNPU is a novel transcriptional target of c-Myc in hepatocellular carcinoma. FEBS Lett. 2021;595:68–84.
Article
CAS
PubMed
Google Scholar
Asmamaw M, Liu Y, Zheng Y, Shi X, Liu H. Skp2 in the ubiquitin-proteasome system: a comprehensive review. Med Res Rev. 2020;40:1920–49.
Article
CAS
PubMed
Google Scholar
von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–200.
Article
PubMed
Google Scholar
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, et al. The Skp2 pathway: a critical target for Cancer therapy. Semin Cancer Biol. 2020;67:16–33.
Article
CAS
PubMed
Google Scholar
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19:14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catalano M, O'Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9:1703244.
Article
CAS
PubMed
Google Scholar
Bla De J. Immunoglobulin D multiple myeloma: presenting features, response to therapy, and survival in a series of 53 cases. J Clin Oncol. 1994;12:2398–404.
Article
CAS
Google Scholar
Shimamoto Y. IgD myeloma: clinical characteristics and a new staging system based on analysis of Japanese patients. Cancer Detect Prev. 1995;19:426–35.
CAS
PubMed
Google Scholar
Jí S, Tichy M, Kovářová H. Two-dimensional gel electrophoresis of four serum samples from patients with IgD myeloma. Clin Chim Acta. 1993;218:149.
Article
Google Scholar
Arpin C, Bouteiller OD, Razanajaona D, Fugier-Vivier I, Briere F, Banchereau J, et al. The Normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cμ–Cδ switch, and λ light chain expression. J Exp Med. 1998;187:1169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu C, Wang W, Tang X, Xu T, Zhang Y, Guo M, et al. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer. 2021;20:84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Guo M, Ding P, Deng Z, Ke M, Yuan Y, et al. BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther. 2021;6:361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengal AT, Patch AM, Snell CE, Smith DS, Leung SCY, Talhouk A, et al. FGFR2c mesenchymal isoform expression is associated with poor prognosis and further refines risk stratification within endometrial Cancer molecular subtypes. Clin Cancer Res. 2020;26:4569–80.
Article
CAS
PubMed
Google Scholar
Xiao B, Zuo D, Hirukawa A, Cardiff RD, Lamb R, Sonenberg N, et al. Rheb1-independent activation of mTORC1 in mammary tumors occurs through activating mutations in mTOR. Cell Rep. 2020;31:107571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182:1623–1640 e1634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in Cancer. Cell. 2019;176:869–881 e813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahn J, Zhang Q, Li F, Chan T, Lin X, Kim Y, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61:221–30.
Article
CAS
PubMed
Google Scholar
Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. Plos One. 2015;10:e0141214.
Article
PubMed
PubMed Central
Google Scholar
Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva B, Perez-Andres M, Vidriales MB, Almeida J, de Las Heras N, Mateos MV, et al. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia. 2011;25:697–706.
Article
CAS
PubMed
Google Scholar
Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol. 2014;165:441–54.
Article
PubMed
Google Scholar
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J Natl Cancer Inst. 2018;110:304-15.
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66:9–21 e27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in Myogenesis. Mol Cell. 2017;66:22–37 e29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018;9:2629.
Article
PubMed
PubMed Central
Google Scholar
Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N (6)-methyladenosine. Cell Res. 2017;27:626–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21:172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agrawal AA, Yu L, Smith PG, Buonamici S. Targeting splicing abnormalities in cancer. Curr Opin Genet Dev. 2018;48:67–74.
Article
CAS
PubMed
Google Scholar
Biamonti G, Catillo M, Pignataro D, Montecucco A, Ghigna C. The alternative splicing side of cancer. Semin Cell Dev Biol. 2014;32:30–6.
Article
CAS
PubMed
Google Scholar
Xing S, Li Z, Ma W, He X, Shen S, Wei H, et al. DIS3L2 promotes progression of hepatocellular carcinoma via hnRNP U-mediated alternative splicing. Cancer Res. 2019;79:4923–36.
Article
CAS
PubMed
Google Scholar
Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in Cancer. Cell Rep. 2017;20:2215–26.
Article
CAS
PubMed
Google Scholar
Crawford L, Campbell D, Morgan J, Lawson M, Down J, Chauhan D, et al. The E3 ligase HUWE1 inhibition as a therapeutic strategy to target MYC in multiple myeloma. Oncogene. 2020;39:5001–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jovanovic KK, Roche-Lestienne C, Ghobrial IM, Facon T, Quesnel B, Manier S. Targeting MYC in multiple myeloma. Leukemia. 2018;32:1295–306.
Article
CAS
PubMed
Google Scholar