Van Meir E, Hadjipanayis C, Norden A, Shu H, Wen P, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–93.
Article
PubMed
PubMed Central
Google Scholar
Malzkorn B, Reifenberger G. Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system. Curr Opin Oncol. 2016;28(6):494–501.
Article
PubMed
Google Scholar
Villani V, Anghileri E, Prosperini L, Lombardi G, Rudà R, Gaviani P, et al. Adjuvant chemotherapy after severe myelotoxicity during chemoradiation phase in malignant gliomas. Is it feasibile? Results from AINO study (Italian Association for Neuro-Oncology). J Neurol. 2021;268(8):2866–75.
Article
CAS
PubMed
Google Scholar
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati NJ. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomar M, Kumar A, Srivastava C, Shrivastava AJ. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 2021;1876:188616.
Strobel H, Baisch T, Fitzel R, Schilberg K, Siegelin M, Karpel-Massler G, et al. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines. 2019;7:3.
Article
CAS
Google Scholar
Moody C, Wheelhouse RJP. The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals (Basel). 2014;7(7):797–838.
Article
CAS
Google Scholar
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198–210.
Article
PubMed
PubMed Central
Google Scholar
Cech T, Steitz JJC. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.
Article
CAS
PubMed
Google Scholar
Kopp F, Mendell JJC. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.
CAS
PubMed
PubMed Central
Google Scholar
Ulitsky I, Bartel DJC. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palazzo A, Koonin EJC. Functional long non-coding RNAs evolve from junk transcripts. Cell. 2020;183(5):1151–61.
Article
CAS
PubMed
Google Scholar
Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM, et al. Temozolomide treatment induces lncRNA MALAT1 in an NF-kappaB and p53 codependent manner in glioblastoma. Cancer Res. 2019;79(10):2536–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19(1):28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang MX, Zhang LZ, Fu LM, Yao HH, Tan L, Feng ZH, et al. Positive feedback regulation of lncRNA PVT1 and HIF2alpha contributes to clear cell renal cell carcinoma tumorigenesis and metastasis. Oncogene. 2021;40(37):5639–50.
Tang D, Luo Y, Jiang Y, Hu P, Peng H, Wu S, et al. LncRNA KCNQ1OT1 activated by c-Myc promotes cell proliferation via interacting with FUS to stabilize MAP 3K1 in acute promyelocytic leukemia. Cell Death Dis. 2021;12(9):795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18(1):187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen R, Nishimura M, Bumbaca S, Kharbanda S, Forrest W, Kasman I, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75.
Article
CAS
PubMed
Google Scholar
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lathia J, Mack S, Mulkearns-Hubert E, Valentim C, Rich JJG, development: Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203–17.
Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Babikir H, Müller S, Yagnik G, Shamardani K, Catalan F, et al. The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. Cancer Discov. 2019;9(12):1708–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y, et al. Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transition. Cell Rep. 2016;17(11):2994–3009.
Article
CAS
PubMed
Google Scholar
Zhang Z, Xu J, Chen Z, Wang H, Xue H, Yang C, et al. Transfer of MicroRNA via macrophage-derived extracellular vesicles promotes proneural-to-mesenchymal transition in glioma stem cells. Cancer Immunol Res. 2020;8(7):966–81.
Article
CAS
PubMed
Google Scholar
Johansson E, Grassi ES, Pantazopoulou V, Tong B, Lindgren D, Berg TJ, et al. CD44 interacts with HIF-2alpha to modulate the hypoxic phenotype of Perinecrotic and perivascular glioma cells. Cell Rep. 2017;20(7):1641–53.
Article
CAS
PubMed
Google Scholar
Carro M, Lim W, Alvarez M, Bollo R, Zhao X, Snyder E, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318–25.
Article
CAS
PubMed
Google Scholar
Lau J, Ilkhanizadeh S, Wang S, Miroshnikova Y, Salvatierra N, Wong R, et al. STAT3 blockade inhibits radiation-induced malignant progression in glioma. Cancer Res. 2015;75(20):4302–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Soares J, Greninger P, Edelman E, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.
Article
CAS
PubMed
Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin A, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf A, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.
Article
CAS
PubMed
Google Scholar
Gyori B, Venkatachalam G, Thiagarajan P, Hsu D, Clement MJ. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2014;2:457–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Podhorecka M, Skladanowski A, Bozko PJ. H2AX phosphorylation: its role in DNA damage response and cancer. J Nucleic Acids Ther. 2010;920161:9.
Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G. Proneural-mesenchymal transition: phenotypic plasticity to acquire multitherapy resistance in glioblastoma. Int J Mol Sci. 2019;20(11):2746.
Hegde A, Upadhya SJ. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci. 2007;30(11):587–95.
Article
CAS
PubMed
Google Scholar
Fu D, Lala-Tabbert N, Lee H, Wiper-Bergeron NJ. Mdm2 promotes myogenesis through the ubiquitination and degradation of CCAAT/enhancer-binding protein β. J Biol Chem. 2015;290(16):10200–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19(1):138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner E, Nebreda AJ. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–49.
Article
CAS
PubMed
Google Scholar
Thornton T, Pedraza-Alva G, Deng B, Wood C, Aronshtam A, Clements J, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. 2008;320(5876):667–70.
CAS
Google Scholar
Prins N, Harrison J, Chu H, Blackburn K, Alam J, Scheltens P. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer's disease. Alzheimers Res Ther. 2021;13(1):106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duffy J, Harrington E, Salituro F, Cochran J, Green J, Gao H, et al. The discovery of VX-745: a novel and selective p38α kinase inhibitor. ACS Med Chem Lett. 2011;2(10):758–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldsmith C, Kim S, Karunarathna N, Neuendorff N, Toussaint L, Earnest D, et al. Inhibition of p38 MAPK activity leads to cell type-specific effects on the molecular circadian clock and time-dependent reduction of glioma cell invasiveness. BMC Cancer. 2018;18(1):43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su B, Chen JJM. Pharmacological inhibition of p38 potentiates antimicrobial peptide TP4-induced cell death in glioblastoma cells. Mol Cell Biochem. 2020;464:1–9.
Article
CAS
PubMed
Google Scholar
Pegg A, Byers TJ. Repair of DNA containing O6-alkylguanine. FASEB J. 1992;6(6):2302–10.
Article
CAS
PubMed
Google Scholar
Khan S, Bhat ZR, Jena G. Role of autophagy and histone deacetylases in diabetic nephropathy: current status and future perspectives. Genes Dis. 2016;3(3):211–9.
Article
PubMed
PubMed Central
Google Scholar
Brandner S, McAleenan A, Kelly C, Spiga F, Cheng H, Dawson S, et al. MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide: a comprehensive meta-analysis based on a Cochrane Systematic Review. Neuro Oncol. 2021;23(9):1457–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist. 2021;4:17–43.
CAS
PubMed
PubMed Central
Google Scholar
Wu W, Klockow J, Zhang M, Lafortune F, Chang E, Jin L, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780.
Article
CAS
PubMed
Google Scholar
Ohba S, Yamashiro K, Hirose YJC. Inhibition of DNA repair in combination with temozolomide or dianhydrogalactiol overcomes temozolomide-resistant glioma cells. Cancers (Basel). 2021;13(11):2570.
Article
CAS
Google Scholar
Rominiyi O, Collis SJ. DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies; 2021.
Google Scholar
Sharifi Z, Abdulkarim B, Meehan B, Rak J, Daniel P, Schmitt J, et al. Mechanisms and antitumor activity of a binary EGFR/DNA-targeting strategy overcomes resistance of glioblastoma stem cells to temozolomide. Clin Cancer Res. 2019;25(24):7594–608.
Article
CAS
PubMed
Google Scholar
Garnier D, Meehan B, Kislinger T, Daniel P, Sinha A, Abdulkarim B, et al. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro Oncol. 2018;20(2):236–48.
Article
CAS
PubMed
Google Scholar
Wang X, Zhou R, Xiong Y, Zhou L, Yan X, Wang M, et al. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma. Cell Res. 2021;31(6):684–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel A, Tirosh I, Trombetta J, Shalek A, Gillespie S, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.
Article
CAS
PubMed
Google Scholar
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33(1):152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. 2020;11(3):168.
Google Scholar
Xie C, Zhang L, Chen Z, Zhong W, Fang J, Zhu Y, et al. A hMTR4-PDIA3P1-miR-125/124-TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemoresistance. Hepatology. 2020;71(5):1660–77.
Article
CAS
PubMed
Google Scholar
Sun C, Zhang L, Li G, Li S, Chen Z, Fu Y, et al. The lncRNA PDIA3P Interacts with miR-185-5p to Modulate Oral Squamous Cell Carcinoma Progression by Targeting Cyclin. Mol Ther Nucleic Acids. 2017;D2(9):100–10.
Article
CAS
Google Scholar
Humphreys L, Smith P, Chen Z, Fouad S, D’Angiolella V. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ. 2021;28(2):522–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu D, Lala-Tabbert N, Lee H, Wiper-Bergeron N. Mdm2 promotes myogenesis through the ubiquitination and degradation of CCAAT/enhancer-binding protein beta. J Biol Chem. 2015;290(16):10200–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weston C, Lambright D, Davis RJS. Signal transduction. MAP kinase signaling specificity. Science. 2002;296(5577):2345–7.
Article
CAS
PubMed
Google Scholar
Filippi-Chiela E, Bueno e Silva M, Thomé M, Lenz G. Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy. 2015;11(7):1099–113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirose Y, Katayama M, Mirzoeva O, Berger M, Pieper R. Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res. 2005;65(11):4861–9.
Article
CAS
PubMed
Google Scholar
Patil C, Nuño M, Elramsisy A, Mukherjee D, Carico C, Dantis J, et al. High levels of phosphorylated MAP kinase are associated with poor survival among patients with glioblastoma during the temozolomide era. Neuro Oncol. 2013;15(1):104–11.
Article
CAS
PubMed
Google Scholar
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med. 2018;7(1):33.
Article
PubMed
PubMed Central
Google Scholar
Silber J, Bobola M, Blank A, Schoeler K, Haroldson P, Huynh M, et al. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res. 2002;8(9):3008–18.
CAS
PubMed
Google Scholar