Thorgeirsson SS, Grisham JW: Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002, 31: 339-346. 10.1038/ng0802-339.
Article
CAS
Google Scholar
Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A: Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene. 1997, 14: 2927-2933. 10.1038/sj.onc.1201136.
Article
CAS
Google Scholar
Lee JS, Grisham JW, Thorgeirsson SS: Comparative functional genomics for identifying models of human cancer. Carcinogenesis. 2005, 26: 1013-1020. 10.1093/carcin/bgi030.
Article
CAS
Google Scholar
Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW: An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell. 2008, 13: 852-864. 10.1016/j.cell.2008.09.061.
Article
Google Scholar
Yachida S, Sakamoto M, Imaida K, Yokohira M, Saoo K, Okano K, Wakabayashi H, Maeta H, Suzuki Y: p27 is overexpressed in very early stages of hepatocarcinogenesis. Cancer Sci. 2008, 99: 2152-2159. 10.1111/j.1349-7006.2008.00923.x.
Article
CAS
Google Scholar
Jiang Sheng Ze, Fang Gang Shi, Gao Yi, Wang Shuang, Chen Feng Jian: Dynamic changes of metrix metalloproteinases in liver tissue during the development of diethylinitrosamine-induced rat heptocarcinoma. World Chin J Digestol. 2001, 9 (7): 759-762.
CAS
Google Scholar
Umeda T, Hino O: Molecular aspects of human hepatocarcinogenesis mediated by inflammation: From hypercarcinogenic state to normo- or hypo carcinogenic state. Oncology. 2002, 62 (Suppl): 138-142. 10.1159/000048274.
Google Scholar
Mantovani A: Cancer: Inflammation by remote control. Nature. 2005, 435: 752-753. 10.1038/435752a.
Article
CAS
Google Scholar
Farazi PA, DePinho RA: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006, 6: 674-687. 10.1038/nrc1934.
Article
CAS
Google Scholar
Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, Durnez A, Demetris AJ, Thorgeirsson SS: Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004, 40: 667-676. 10.1002/hep.20375.
Article
CAS
Google Scholar
Feitelson MA, Pan J, Lian Z: Early molecular and genetic determinants of primary liver malignancy. Surg Clin North Am. 2004, 84: 339-354. 10.1016/S0039-6109(03)00226-3.
Article
Google Scholar
Garber K: Energy boost. the Warburg Effect returns in a new theory of cancer. J Natl Cancer Inst. 2004, 96: 1805-1806.
Article
Google Scholar
Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S: Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res. 2009, 28: 43-10.1186/1756-9966-28-43.
Article
CAS
Google Scholar
Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25: 4633-4646. 10.1038/sj.onc.1209597.
Article
CAS
Google Scholar
Wittig R, Coy JF: The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer. Perspectives in Medicinal Chemistry. 2007, 1: 64-82.
Google Scholar
Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478.
Article
CAS
Google Scholar
Stern R, Shuster S, Neudecker BA, Formby B: Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res. 2002, 276: 24-31. 10.1006/excr.2002.5508.
Article
CAS
Google Scholar
Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Klieser W: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60: 916-921.
CAS
Google Scholar
Philips BJ, Dhir R, Hutzley J, Sen M, Kelavkar UP: Polyunsaturated fatty acid metabolizing 15-Lipoxygenase-1 (15-LO-1) expression in normal and tumorigenic human bladder tissues. Appl Immunohistochem Mol Morphol. 2008, 16: 159-164. 10.1097/PAI.0b013e31805baa41.
Article
CAS
Google Scholar
Young CD, Anderson SM: Sugar and fat – that's where it's at: metabolic changes in tumors. Breast Cancer Res. 2008, 10: 202-10.1186/bcr1852.
Article
Google Scholar
Miyazaki M, Dobrzyn A, Elias PM, Ntambi JM: Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc Natl Acad Sci USA. 2005, 102: 12501-12506. 10.1073/pnas.0503132102.
Article
CAS
Google Scholar
Christianson JL, Nicoloro S, Straubhaar J, Czech MP: Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem. 2008, 283: 2906-1916. 10.1074/jbc.M705656200.
Article
CAS
Google Scholar
Uma RS, Naresh KN, D'Cruz AK, Mulherkar R, Borges AM: Metastasis of squamous cell carcinoma of the oral tongue is associated with down-regulation of epidermal fatty acid binding protein (E-FABP). Oral Oncol. 2007, 43: 27-32. 10.1016/j.oraloncology.2005.12.024.
Article
CAS
Google Scholar
Ordovas JM: Identification of a functional polymorphism at the adipose fatty acid binding protein gene (FABP4) and demonstration of its association with cardiovascular disease: a path to follow. Nutr Rev. 2007, 65: 130-134. 10.1111/j.1753-4887.2007.tb00290.x.
Article
Google Scholar
Gillilan RE, Ayers SD, Noy N: Structural basis for activation of fatty acid-binding protein 4. J Mol Biol. 2007, 372: 1246-1260. 10.1016/j.jmb.2007.07.040.
Article
CAS
Google Scholar
Hendrich S, Campbell HA, Pitot HC: Quantitative stereological evaluation of four histochemical markers of altered foci in multistage hepatocarcinogenesis in the rat. Carcinogenesis. 1987, 8: 1245-1250. 10.1093/carcin/8.9.1245.
Article
CAS
Google Scholar
Higashi K, Hiai H, Higashi T, Muramatsu M: Regulatory mechanism of glutathione S-transferase P-form during chemical hepatocarcinogenesis: old wine in a new bottle. Cancer Lett. 2004, 209: 155-163. 10.1016/j.canlet.2004.01.003.
Article
CAS
Google Scholar
Scibior D, Skrzycki M, Podsiad M, Czeczot H: Glutathione level and glutathione-dependent enzyme activities in blood serum of patients with gastrointestinal tract tumors. Clin Biochem. 2008, 41: 852-858. 10.1016/j.clinbiochem.2008.03.005.
Article
CAS
Google Scholar
Kipp A, Banning A, Brigelius-Flohé R: Activation of the glutathione peroxidase 2 (GPx2) promoter by beta-catenin. Biol Chem. 2007, 388: 1027-1033. 10.1515/BC.2007.137.
Article
CAS
Google Scholar
Lu SC: Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 1999, 13: 1169-1183.
CAS
Google Scholar
Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L, Lu SC: Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. 2001, 15: 19-21.
Google Scholar
Schwarz KB, Kew M, Klein A, Abrams RA, Sitzmann J, Jones L, Sharma S, Britton RS, Di Bisceglie AM, Groopman J: Increased hepatic oxidative DNA damage in patients with hepatocellular carcinoma. Dig Dis Sci. 2001, 46: 2173-2178. 10.1023/A:1011958814371.
Article
CAS
Google Scholar
Jungst C, Cheng B, Gehrke R, Schmitz V, Nischalke HD, Ramakers J, Schramel P, Schirmacher P, Sauerbruch T, Caselmann WH: Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology. 2004, 39: 1663-1672. 10.1002/hep.20241.
Article
Google Scholar
Baumann C, Davies B, Peters M, Kaufmann-Reiche U, Lessl M, Theuring F: AKR1B7 (mouse vas deferens protein) is dispensable for mouse development and reproductive success. Reproduction. 2007, 134: 97-109. 10.1530/REP-07-0022.
Article
CAS
Google Scholar
Jia G, Takahashi R, Zhang Z, Tsuji Y, Sone H: Aldo-keto reductase 1 family B7 is the gene induced in response to oxidative stress in the livers of Long-Evans Cinnamon rats. Int J Oncol. 2006, 29: 829-838.
CAS
Google Scholar
Ushio-Fukai M, Nakamura Y: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008, 266: 37-52. 10.1016/j.canlet.2008.02.044.
Article
CAS
Google Scholar
Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS: NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology. 2007, 133: 1637-1648. 10.1053/j.gastro.2007.08.022.
Article
CAS
Google Scholar
Rodriguez-Antona C, Ingelman-Sundberg M: Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006, 25: 1679-1691. 10.1038/sj.onc.1209377.
Article
CAS
Google Scholar
McFadyen MC, Murray GI: Cytochrome P450 1B1: a novel anticancer therapeutic target. Future Oncol. 2005, 1: 259-263. 10.1517/14796694.1.2.259.
Article
CAS
Google Scholar
Vaclavikova R, Hubackova M, Stribrna-Sarmanova J, Kodet R, Mrhalova M, Novotny J, Gut I, Soucek P: RNA expression of cytochrome P450 in breast cancer patients. Anticancer Res. 2007, 27: 4443-4450.
CAS
Google Scholar
Nebert DW, Dalton TP: The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006, 6: 947-960. 10.1038/nrc2015.
Article
CAS
Google Scholar
Poste G, Fidler IJ: The pathogenesis of cancer metastasis. Nature. 1980, 283: 139-146. 10.1038/283139a0.
Article
CAS
Google Scholar
Bernards R, Weinberg RA: A progression puzzle. Nature. 2002, 418: 823-10.1038/418823a.
Article
CAS
Google Scholar
Chambers AF, Tuck AB: Ras-responsive genes and tumor metastasis. Crit Rev Oncog. 1993, 4: 95-114.
CAS
Google Scholar
Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC: c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res. 1994, 54: 3260-3266.
CAS
Google Scholar
Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T: C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res. 2003, 63: 5028-5033.
CAS
Google Scholar
Cairns RA, Khokha R, Hill RP: Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med. 2003, 3: 659-671. 10.2174/1566524033479447.
Article
CAS
Google Scholar
Coussens LM, Werb Z: Inflammation and cancer. Nature. 2002, 420: 860-867. 10.1038/nature01322.
Article
CAS
Google Scholar
Grigioni WF, Garbisa S, D'Errico A, Baccarini P, Stetler-Stevenson WG, Liotta LA, Mancini AM: Evaluation of hepatocellular carcinoma aggressiveness by a panel of extracellular matrix antigens. Am J Pathol. 1991, 138: 647-654.
CAS
Google Scholar
Torimura T, Ueno T, Inuzuka S, Kin M, Ohira H, Kimura Y, Majima Y, Sata M, Abe H, Tanikawa K: The extracellular matrix in hepatocellular carcinoma shows different localization patterns depending on the differentiation and the histological pattern of tumors: immunohistochemical analysis. J Hepatol. 1994, 21: 37-46. 10.1016/S0168-8278(94)80134-7.
Article
CAS
Google Scholar
Bissell DM: Chronic liver injury, TGF-beta, and cancer. Exp Mol Med. 2001, 33: 179-190.
Article
CAS
Google Scholar
Carloni V, Romanelli RG, Mercurio AM, Pinzani M, Laffi G, Cotrozzi G, Gentilini P: Knockout of alpha6beta1-integrin expression reverses the transformed phenotype of hepatocarcinoma cells. Gastroenterology. 1998, 115: 433-442. 10.1016/S0016-5085(98)70210-0.
Article
CAS
Google Scholar
Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R: Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 2003, 63: 8312-8317.
CAS
Google Scholar
Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S: Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest. 2001, 81: 613-627.
Article
CAS
Google Scholar
Fu BH, Wu ZZ, Dong C: Integrin beta1 mediates hepatocellular carcinoma cells chemotaxis to laminin. Hepatobiliary Pancreat Dis Int. 2004, 3: 548-551.
CAS
Google Scholar
Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM: An immune response manifested by the common occurrence of Annexin I and Annexin II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA. 2001, 98: 9824-9829. 10.1073/pnas.171320598.
Article
CAS
Google Scholar
Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T, Kamada K, Naito A, Hirao S, Nakajima Y: Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer. 2001, 92: 1419-1426. 10.1002/1097-0142(20010915)92:6<1419::AID-CNCR1465>3.0.CO;2-J.
Article
CAS
Google Scholar
Morel E, Gruenberg J: The p11/S100A10 light chain of annexin A2 is dispensable for annexin A2 association to endosomes and functions in endosomal transport. PLoS ONE. 2007, 2: e1118-10.1371/journal.pone.0001118.
Article
Google Scholar
Ito Y, Arai K, Nozawa R, Yoshida H, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Kuma K, Miyauchi A: S100A10 expression in thyroid neoplasms originating from the follicular epithelium: contribution to the aggressive characteristic of anaplastic carcinoma. Anticancer Res. 2007, 27: 2679-2783.
CAS
Google Scholar
Coleman WB: Mechanisms of human hepatocarcinogenesis. Curr Mol Med. 2003, 3: 573-588. 10.2174/1566524033479546.
Article
CAS
Google Scholar
Coussens LM, Werb Z: Inflammation and cancer. Nature. 2002, 420: 860-867. 10.1038/nature01322.
Article
CAS
Google Scholar
Slaga TJ, Lichti U, Hennings H, Elgjo K, Yuspa SH: Effects of tumor promoters and steroidal anti-inflammatory agents on skin of newborn mice in vivo and in vitro. J Natl Cancer Inst. 1978, 60: 425-431.
CAS
Google Scholar
Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD: The codependence of angiogenesis and chronic inflammation. FASEB J. 1997, 11: 457-465.
CAS
Google Scholar