Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.
Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10:20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isbarn H, Boccon-Gibod L, Carroll PR, Montorsi F, Schulman C, Smith MR, et al. Androgen deprivation therapy for the treatment of prostate cancer: consider both benefits and risks. Eur Urol. 2009;55(1):62–75. https://doi.org/10.1016/j.eururo.2008.10.008.
Article
CAS
PubMed
Google Scholar
Scher HI, Solo K, Valant J, Todd MB, Mehra M. Prevalence of prostate Cancer clinical states and mortality in the United States: estimates using a dynamic progression model. PLoS One. 2015;10(10):e0139440. https://doi.org/10.1371/journal.pone.0139440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: opportunities for therapeutic targeting from multiple angles. Oncotarget. 2017;8(2):3724–45. https://doi.org/10.18632/oncotarget.12554.
Article
PubMed
Google Scholar
Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell. 2017;32(4):474–489.e6.
Laudato S, Aparicio A, Giancotti FG. Clonal evolution and epithelial plasticity in the emergence of AR-independent prostate carcinoma. Trends Cancer. 2019;5(7):440–55. https://doi.org/10.1016/j.trecan.2019.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elliott B, Millena AC, Matyunina L, Zhang M, Zou J, Wang G, et al. Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells. Cancer Lett. 2019;448:155–67. https://doi.org/10.1016/j.canlet.2019.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge J, Yu W, Li J, Ma H, Wang P, Zhou Y, et al. USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc. J Exp Clin Cancer Res. 2021;40(1):59. https://doi.org/10.1186/s13046-021-01843-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hung CL, Wang LY, Yu YL, Chen HW, Srivastava S, Petrovics G, et al. A long noncoding RNA connects c-Myc to tumor metabolism. PNAS. 2014;111(52):18697–702. https://doi.org/10.1073/pnas.1415669112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM. C-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009;28(27):2485–91. https://doi.org/10.1038/onc.2009.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CJ, Cencic R, Mills JR, Robert F, Pelletier J. C-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res. 2008;68(13):5326–34. https://doi.org/10.1158/0008-5472.CAN-07-5876.
Article
CAS
PubMed
Google Scholar
Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One. 2010;5(2):e9427. https://doi.org/10.1371/journal.pone.0009427.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan H, Zhu Y, Wei W, Shao S, Rui X. Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer. World J Surg Oncol. 2018;16(1):59. https://doi.org/10.1186/s12957-018-1352-3.
Article
PubMed
PubMed Central
Google Scholar
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate Cancer. Cancer Cell. 2016;30(4):563–77. https://doi.org/10.1016/j.ccell.2016.09.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyquist MD, Corella A, Coleman I, De Sarkar N, Kaipainen A, Ha G, et al. Combined TP53 and RB1 loss promotes prostate Cancer resistance to a Spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 2020;31(8):107669. https://doi.org/10.1016/j.celrep.2020.107669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferraldeschi R, Nava Rodrigues D, Riisnaes R, Miranda S, Figueiredo I, Rescigno P, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67(4):795–802. https://doi.org/10.1016/j.eururo.2014.10.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155(6):1309–22. https://doi.org/10.1016/j.cell.2013.11.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutillon F, Pigat N, Sala LS, Reyes-Gomez E, Moriggl R, Guidotti JE, et al. STAT5a/b deficiency delays, but does not prevent, prolactin-driven prostate tumorigenesis in mice. Cancers (Basel). 2019 Jul 2;11(7):929. https://doi.org/10.3390/cancers11070929.
Article
CAS
Google Scholar
Ma Y, Zhang X, Alsaidan OA, Yang X, Sulejmani E, Zha J, et al. Long-chain acyl-CoA Synthetase 4-mediated fatty acid metabolism sustains androgen receptor pathway-independent prostate Cancer. Mol Cancer Res. 2021;19(1):124–35. https://doi.org/10.1158/1541-7786.MCR-20-0379.
Article
CAS
PubMed
Google Scholar
Seigne C, Fontanière S, Carreira C, Lu J, Tong WM, Fontanière B, et al. Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice. BMC Cancer. 2010;10(1):395. https://doi.org/10.1186/1471-2407-10-395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malik R, Khan AP, Asangani IA, Cieślik M, Prensner JR, Wang X, et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med. 2015;21(4):344–52. https://doi.org/10.1038/nm.3830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teinturier R, Luo Y, Decaussin-Petrucci M, Vlaeminck-Guillem V, Vacherot F, Firlej V, et al. Men1 disruption in Nkx3.1-deficient mice results in ARlow/CD44+ microinvasive carcinoma development with the dysregulated AR pathway. Oncogene. 2021;40(6):1118–27. https://doi.org/10.1038/s41388-020-01589-1.
Article
CAS
PubMed
Google Scholar
Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 2012;8(3):277–84. https://doi.org/10.1038/nchembio.773.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dreijerink KMA, Groner AC, Vos ESM, Font-Tello A, Gu L, Chi D, et al. Enhancer-mediated oncogenic function of the Menin tumor suppressor in breast Cancer. Cell Rep. 2017;18(10):2359–72. https://doi.org/10.1016/j.celrep.2017.02.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kigel B, Varshavsky A, Kessler O, Neufeld G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS One. 2008;3(9):e3287. https://doi.org/10.1371/journal.pone.0003287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON. Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc. 2010;5(4):702–13. https://doi.org/10.1038/nprot.2010.11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havens AM, Pedersen EA, Shiozawa Y, Ying C, Jung Y, Sun Y, et al. An in vivo mouse model for human prostate cancer metastasis. Neoplasia. 2008;10(4):371–80. https://doi.org/10.1593/neo.08154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontanière S, Duvillié B, Scharfmann R, Carreira C, Wang ZQ, Zhang CX. Tumour suppressor menin is essential for development of the pancreatic endocrine cells. J Endocrinol. 2008;199(2):287–98. https://doi.org/10.1677/JOE-08-0289.
Article
CAS
PubMed
Google Scholar
Huang F, Chen H, Zhu X, Gong T, Li X, Hankey W, et al. The oncogenomic function of androgen receptor in esophageal squamous cell carcinoma is directed by GATA3. Cell Res. 2020;31(3):362–5. https://doi.org/10.1038/s41422-020-00428-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc. 2007;2(7):1722–33. https://doi.org/10.1038/nprot.2007.243.
Article
CAS
PubMed
Google Scholar
Kodama S, Yamazaki Y, Negishi M. Pregnane X. Receptor represses HNF4α gene to induce insulin-like growth factor-binding protein IGFBP1 that alters morphology of and migrates HepG2 cells. Mol Pharmacol 2015;88(4):746–757, DOI: https://doi.org/10.1124/mol.115.099341.
Sancho A, Li S, Paul T, Zhang F, Aguilo F, Vashisht A, et al. CHD6 regulates the topological arrangement of the CFTR locus. Hum Mol Genet. 2015;24(10):2724–32. https://doi.org/10.1093/hmg/ddv032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. https://doi.org/10.1126/scisignal.2004088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. PNAS. 2019;116(23):11428–36. https://doi.org/10.1073/pnas.1902651116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018; 173 (2): 291–304.e6.
Wu G, Yuan M, Shen S, Ma X, Fang J, Zhu L, et al. Menin enhances c-Myc-mediated transcription to promote cancer progression. Nat Commun. 2017;8(1):15278. https://doi.org/10.1038/ncomms15278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature. 2012;482(7386):542–6. https://doi.org/10.1038/nature10806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caffarel MM, Moreno-Bueno G, Cerutti C, Palacios J, Guzman M, Mechta-Grigoriou F, et al. JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008;27(37):5033–44. https://doi.org/10.1038/onc.2008.145.
Article
CAS
PubMed
Google Scholar
Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, et al. Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol. 2011;25(9):1527–38. https://doi.org/10.1210/me.2011-1037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullwood MJ, Ruan Y. ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem. 2009;107(1):30–9. https://doi.org/10.1002/jcb.22116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006;38(11):1278–88. https://doi.org/10.1038/ng1913.
Article
CAS
PubMed
Google Scholar
Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, et al. Nuclear-cytoplasmic shuttling of menin regulates nuclear translocation of β-catenin. Mol Cell Biol. 2009;29(20):5477–87. https://doi.org/10.1128/MCB.00335-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang X, Cao Y, Li F, Su Y, Li Y, Peng Y, et al. Targeting β-catenin signaling for therapeutic intervention in MEN1-deficient pancreatic neuroendocrine tumours. Nat Commun. 2014;5(1):5809. https://doi.org/10.1038/ncomms6809.
Article
CAS
PubMed
Google Scholar
Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y. Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol. 2009;602(1):8–14. https://doi.org/10.1016/j.ejphar.2008.10.053.
Article
CAS
PubMed
Google Scholar
Kim WK, Kwon Y, Jang M, Park M, Kim J, Cho S, et al. β-Catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Sci Rep. 2019;9(1):18440. https://doi.org/10.1038/s41598-019-54890-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yochum GS, Sherrick CM, Macpartlin M, Goodman RH. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. PNAS. 2010;107(1):145–50. https://doi.org/10.1073/pnas.0912294107.
Article
PubMed
Google Scholar
Yochum GS. Multiple Wnt/ß-catenin responsive enhancers align with the MYC promoter through long-range chromatin loops. PLoS One. 2011;6(4):e18966. https://doi.org/10.1371/journal.pone.0018966.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, et al. Cooperation between MYC and β-catenin in liver tumorigenesis requires yap/Taz. Hepatology. 2020;72(4):1430–43. https://doi.org/10.1002/hep.31120.
Article
CAS
PubMed
Google Scholar
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39. https://doi.org/10.1016/j.cell.2004.06.006.
Article
CAS
PubMed
Google Scholar
Wang F, Zhang G, Xing T, Lu Z, Li J, Peng C, et al. Renalase contributes to the renal protection of delayed ischaemic preconditioning via the regulation of hypoxia-inducible factor-1α. J Cell Mol Med. 2015;19(6):1400–9. https://doi.org/10.1111/jcmm.12527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Tan J, Xie H, Wang J, Meng X, Wang R. HIF-1 regulates EMT via the snail and β-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med. 2016;20(4):688–97. https://doi.org/10.1111/jcmm.12769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konisti S, Kiriakidis S, Paleolog EM. Hypoxia--a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(3):153–62. https://doi.org/10.1038/nrrheum.2011.205.
Article
CAS
PubMed
Google Scholar
Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 1999;96(1):143–52. https://doi.org/10.1016/S0092-8674(00)80967-8.
Article
CAS
PubMed
Google Scholar
Wasylishen AR, Sun C, Chau GP, Qi Y, Su X, Kim MP, et al. Men1 maintains exocrine pancreas homeostasis in response to inflammation and oncogenic stress. PNAS. 2020;117(12):6622–9. https://doi.org/10.1073/pnas.1920017117.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Taille A, Rubin MA, Chen MW, Vacherot F, de Medina SG, Burchardt M, et al. Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin Cancer Res. 2003;9(5):1801–7.
PubMed
Google Scholar
Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/β-catenin signaling in Normal and Cancer stem cells. Cancers (Basel). 2011;3(2):2050–79. https://doi.org/10.3390/cancers3022050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan X, Liu J, Lu JF, Tzelepi V, Yang J, Starbuck MW, et al. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res. 2012;18(3):726–36. https://doi.org/10.1158/1078-0432.CCR-11-2521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res. 2003;63(16):4836–41.
CAS
PubMed
Google Scholar
Seigne C, Auret M, Treilleux I, Bonnavion R, Assade F, Carreira C, et al. High incidence of mammary intraepithelial neoplasia development in Men1-disrupted murine mammary glands. J Pathol. 2013;229(4):546–58. https://doi.org/10.1002/path.4146.
Article
CAS
PubMed
Google Scholar
Shin S, Im HJ, Kwon YJ, Ye DJ, Baek HS, Kim D, et al. Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget. 2017;8(37):61604–17. https://doi.org/10.18632/oncotarget.18645.
Article
PubMed
PubMed Central
Google Scholar
Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601. https://doi.org/10.1038/nm1052.
Article
CAS
PubMed
Google Scholar
Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17(5):678–88. https://doi.org/10.1038/ncb3157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang L, Gilkes DM, Hu H, Takano N, Luo W, Lu H, et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget. 2014;5(24):12509–27. https://doi.org/10.18632/oncotarget.2997.
Article
PubMed
PubMed Central
Google Scholar
Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T, et al. Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother. 2020;69(10):1973–87. https://doi.org/10.1007/s00262-020-02598-5.
Article
CAS
PubMed
Google Scholar
Zhang Q, Yin Y, Zhao H, Shi Y, Zhang W, Yang Z, et al. P4HA1 regulates human colorectal cancer cells through HIF1α-mediated Wnt signaling. Oncol Lett. 2021;21(2):145. https://doi.org/10.3892/ol.2020.12406.
Article
CAS
PubMed
Google Scholar
Qin J, Liu Y, Lu Y, Liu M, Li M, Li J, et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep. 2017;7(1):10592. https://doi.org/10.1038/s41598-017-09244-8.
Article
CAS
PubMed
PubMed Central
Google Scholar