Organization WH. 2022 https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=Of%20these%20over%20650%20million,overweight%20or%20obese%20in%202020.
Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I, Psaltopoulou T. Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine. 2021;74(3):478–97. https://doi.org/10.1007/s12020-021-02884-x.
Article
CAS
Google Scholar
Scully T, Ettela A, LeRoith D, Gallagher EJ. Obesity, type 2 diabetes, and Cancer risk. Front Oncol. 2020;10:615375. https://doi.org/10.3389/fonc.2020.615375.
Article
Google Scholar
Lega IC, Lipscombe LL. Review: diabetes, obesity, and Cancer-pathophysiology and clinical implications. Endocr Rev. 2020;41(1). https://doi.org/10.1210/endrev/bnz014.
Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ, Ezzati M. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 2018;6(6):e6–e15. https://doi.org/10.1016/S2213-8587(18)30150-5.
Article
Google Scholar
Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Front Oncol. 2017;7:68. https://doi.org/10.3389/fonc.2017.00068.
Article
Google Scholar
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of Cancer progression. Cell. 2015;162(6):1229–41. https://doi.org/10.1016/j.cell.2015.08.016.
Article
CAS
Google Scholar
Batool A, Hazafa A, Ahmad S, Khan HA, Abideen HMZ, Zafar A, et al. Treatment of lymphomas via regulating the signal transduction pathways by natural therapeutic approaches: a review. Leuk Res. 2021;104:106554. https://doi.org/10.1016/j.leukres.2021.106554.
Article
CAS
Google Scholar
Larsson SC, Wolk A. Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis. Int J Cancer. 2007;121(7):1564–70. https://doi.org/10.1002/ijc.22762.
Article
CAS
Google Scholar
Lichtman MA. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist. 2010;15(10):1083–101. https://doi.org/10.1634/theoncologist.2010-0206.
Article
Google Scholar
Kobayashi T, Lam PY, Jiang H, Bednarska K, Gloury R, Murigneux V, et al. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood. 2020;136(26):3004–17. https://doi.org/10.1182/blood.2020005602.
Article
CAS
Google Scholar
Hosgood HD, Gunter MJ, Murphy N, Rohan TE, Strickler HD. The relation of obesity-related hormonal and cytokine levels with multiple myeloma and non-Hodgkin lymphoma. Front Oncol. 2018;8:103. https://doi.org/10.3389/fonc.2018.00103.
Article
Google Scholar
Lupino L, Perry T, Margielewska S, Hollows R, Ibrahim M, Care M, et al. Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia. 2019;33(12):2884–97. https://doi.org/10.1038/s41375-019-0478-9.
Article
CAS
Google Scholar
Spiegel S, Maczis MA, Maceyka M, Milstien S. New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J Lipid Res. 2019;60(3):484–9. https://doi.org/10.1194/jlr.S091959.
Article
CAS
Google Scholar
Tea MN, Poonnoose SI, Pitson SM. Targeting the sphingolipid system as a therapeutic direction for glioblastoma. Cancers (Basel). 2020;12(1). https://doi.org/10.3390/cancers12010111.
Maceyka M, Rohrbach T, Milstien S, Spiegel S. Role of sphingosine kinase 1 and Sphingosine-1-phosphate Axis in hepatocellular carcinoma. Handb Exp Pharmacol. 2020;259:3–17. https://doi.org/10.1007/164_2019_217.
Article
CAS
Google Scholar
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, et al. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol Ther. 2020;207:107464. https://doi.org/10.1016/j.pharmthera.2019.107464.
Article
CAS
Google Scholar
Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: a novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul. 2020;75:100670. https://doi.org/10.1016/j.jbior.2019.100670.
Article
CAS
Google Scholar
Evangelisti C, Evangelisti C, Buontempo F, Lonetti A, Orsini E, Chiarini F, et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia. 2016;30(11):2142–51. https://doi.org/10.1038/leu.2016.208.
Article
CAS
Google Scholar
Kluk MJ, Ryan KP, Wang B, Zhang G, Rodig SJ, Sanchez T. Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab Investig. 2013;93(4):462–71. https://doi.org/10.1038/labinvest.2013.7.
Article
CAS
Google Scholar
Nishimura H, Akiyama T, Monobe Y, Matsubara K, Igarashi Y, Abe M, et al. Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod Pathol. 2010;23(3):439–49. https://doi.org/10.1038/modpathol.2009.194.
Article
CAS
Google Scholar
Middle S, Coupland SE, Taktak A, Kidgell V, Slupsky JR, Pettitt AR, et al. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol. 2015;4:10. https://doi.org/10.1186/s40164-015-0004-3.
Article
CAS
Google Scholar
Ma J, Zhang L, Zhang J, Liu M, Wei L, Shen T, et al. 15-lipoxygenase-1/15-hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through protein kinase B and heat shock protein 90 complex activation. Int J Biochem Cell Biol. 2013;45(6):1031–41. https://doi.org/10.1016/j.biocel.2013.02.018.
Article
CAS
Google Scholar
Cheng JC, Wang EY, Yi Y, Thakur A, Tsai SH, Hoodless PA. S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation. Mol Cancer Res. 2018;16(10):1543–55. https://doi.org/10.1158/1541-7786.MCR-17-0681.
Article
CAS
Google Scholar
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-phosphate in the tumor microenvironment: a signaling hub regulating Cancer hallmarks. Cells. 2020;9(2). https://doi.org/10.3390/cells9020337.
Wein F, Kuppers R. The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol. 2016;99(1):45–50. https://doi.org/10.1189/jlb.3MR0315-136R.
Article
CAS
Google Scholar
Sun H, Sun S, Chen G, Xie H, Yu S, Lin X, et al. Ceramides and sphingosine-1-phosphate mediate the distinct effects of M1/M2-macrophage infusion on liver recovery after hepatectomy. Cell Death Dis. 2021;12(4):324. https://doi.org/10.1038/s41419-021-03616-9.
Article
CAS
Google Scholar
Weigert A, Weis N, Brune B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology. 2009;214(9–10):748–60. https://doi.org/10.1016/j.imbio.2009.06.003.
Article
CAS
Google Scholar
Dardenne C, Salon M, Authier H, Meunier E, AlaEddine M, Bernad J, et al. Topical aspirin administration improves cutaneous wound healing in diabetic mice through a phenotypic switch of wound macrophages toward an anti-inflammatory and Proresolutive profile characterized by LXA4 release. Diabetes. 2022;71(10):2181–96. https://doi.org/10.2337/db20-1245.
Article
CAS
Google Scholar
Zhang K, Jordan PM, Pace S, Hofstetter RK, Werner M, Chen X, et al. Modulation of inflammation-related lipid mediator pathways by Celastrol during human macrophage polarization. J Inflamm Res. 2022;15:3285–304. https://doi.org/10.2147/JIR.S356964.
Article
Google Scholar
Moorthy M, Sundralingam U, Palanisamy UD. Polyphenols as prebiotics in the Management of High-fat Diet-Induced Obesity: a systematic review of animal studies. Foods. 2021;10(2). https://doi.org/10.3390/foods10020299.
Sarkar S, Kumari D, Gupta SK, Sharma V, Mukhi S, Kamboj P, et al. Saroglitazar and Hepano treatment offers protection against high fat high fructose diet induced obesity, insulin resistance and steatosis by modulating various class of hepatic and circulating lipids. Biomed Pharmacother. 2021;144:112357. https://doi.org/10.1016/j.biopha.2021.112357.
Article
CAS
Google Scholar
Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 2017;34:66–75. https://doi.org/10.1016/j.cellsig.2017.03.002.
Article
CAS
Google Scholar
Liu Y, Deng J, Wang L, Lee H, Armstrong B, Scuto A, et al. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood. 2012;120(7):1458–65. https://doi.org/10.1182/blood-2011-12-399030.
Article
CAS
Google Scholar
Shen Y, Zhao S, Wang S, Pan X, Zhang Y, Xu J, et al. S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma. EBioMedicine. 2019;40:210–23. https://doi.org/10.1016/j.ebiom.2018.12.038.
Article
Google Scholar
Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J. 2019;33(6):7180–91. https://doi.org/10.1096/fj.201801635R.
Article
CAS
Google Scholar
Kim SJ, Kim S, Choi YJ, Kim UJ, Kang KW. CKD-581 downregulates Wnt/beta-catenin pathway by DACT3 induction in hematologic malignancy. Biomol Ther (Seoul). 2022;30(5):435–46. https://doi.org/10.4062/biomolther.2022.022.
Article
Google Scholar
Yang X, Fang D, Li M, Chen J, Cheng Y, Luo J. Knockdown of Chitinase 3-Like-1 inhibits cell proliferation, promotes apoptosis, and enhances effect of anti-programmed death ligand 1 (PD-L1) in diffuse large B cell lymphoma cells. Med Sci Monit. 2021;27:e929431. https://doi.org/10.12659/MSM.929431.
Article
CAS
Google Scholar
Pham LV, Pogue E, Ford RJ. The role of macrophage/B-cell interactions in the pathophysiology of B-cell lymphomas. Front Oncol. 2018;8:147. https://doi.org/10.3389/fonc.2018.00147.
Article
Google Scholar
Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425 author reply 6 doi https://doi.org/10.1158/0008-5472.CAN-06-3037.
Article
CAS
Google Scholar
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. https://doi.org/10.1038/ncomms12150.
Article
CAS
Google Scholar
Johnson AM, Kleczko EK, Nemenoff RA. Eicosanoids in Cancer: new roles in Immunoregulation. Front Pharmacol. 2020;11:595498. https://doi.org/10.3389/fphar.2020.595498.
Article
CAS
Google Scholar
Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181–93. https://doi.org/10.1038/nrc2809.
Article
CAS
Google Scholar
Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, et al. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ. 2021;28(4):1301–16. https://doi.org/10.1038/s41418-020-00652-4.
Article
CAS
Google Scholar
Klil-Drori AJ, Ariel A. 15-lipoxygenases in cancer: a double-edged sword? Prostaglandins Other Lipid Mediat. 2013;106:16–22. https://doi.org/10.1016/j.prostaglandins.2013.07.006.
Article
CAS
Google Scholar
Shan T, Chen S, Chen X, Wu T, Yang Y, Li S, et al. M2TAM subsets altered by lactic acid promote Tcell apoptosis through the PDL1/PD1 pathway. Oncol Rep. 2020;44(5):1885–94. https://doi.org/10.3892/or.2020.7767.
Article
CAS
Google Scholar
Frazzi R, Guardi M. Cellular and molecular targets of resveratrol on lymphoma and leukemia cells. Molecules. 2017;22(6). https://doi.org/10.3390/molecules22060885.
Inoue C, Sobue S, Mizutani N, Kawamoto Y, Nishizawa Y, Ichihara M, et al. Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes. Nagoya J Med Sci. 2020;82(2):261–80. https://doi.org/10.18999/nagjms.82.2.261.
Article
CAS
Google Scholar
Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother Res. 2021;35(10):5514–26. https://doi.org/10.1002/ptr.7189.
Article
CAS
Google Scholar
Nagahashi M, Yamada A, Katsuta E, Aoyagi T, Huang WC, Terracina KP, et al. Targeting the SphK1/S1P/S1PR1 Axis that links obesity, chronic inflammation, and breast Cancer metastasis. Cancer Res. 2018;78(7):1713–25. https://doi.org/10.1158/0008-5472.CAN-17-1423.
Article
CAS
Google Scholar
Koresawa R, Yamazaki K, Oka D, Fujiwara H, Nishimura H, Akiyama T, et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. Br J Haematol. 2016;174(2):264–74. https://doi.org/10.1111/bjh.14054.
Article
CAS
Google Scholar
Bao X, Xu X, Wu Q, Zhang J, Feng W, Yang D, et al. Sphingosine 1-phosphate promotes the proliferation of olfactory ensheathing cells through YAP signaling and participates in the formation of olfactory nerve layer. Glia. 2020;68(9):1757–74. https://doi.org/10.1002/glia.23803.
Article
Google Scholar
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci. 2021;78(7):3423–42. https://doi.org/10.1007/s00018-020-03752-z.
Article
CAS
Google Scholar
Syed SN, Jung M, Weigert A, Brune B. S1P provokes tumor Lymphangiogenesis via macrophage-derived mediators such as IL-1beta or Lipocalin-2. Mediat Inflamm. 2017;2017:7510496. https://doi.org/10.1155/2017/7510496.
Article
CAS
Google Scholar
Weigert A, Weichand B, Brune B. S1P regulation of macrophage functions in the context of cancer. Anti Cancer Agents Med Chem. 2011;11(9):818–29. https://doi.org/10.2174/187152011797655096.
Article
CAS
Google Scholar
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol. 2016;6:218. https://doi.org/10.3389/fonc.2016.00218.
Article
Google Scholar
Tian R, Zuo X, Jaoude J, Mao F, Colby J, Shureiqi I. ALOX15 as a suppressor of inflammation and cancer: lost in the link. Prostaglandins Other Lipid Mediat. 2017;132:77–83. https://doi.org/10.1016/j.prostaglandins.2017.01.002.
Article
CAS
Google Scholar
Kelavkar UP, Cohen C, Kamitani H, Eling TE, Badr KF. Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis. 2000;21(10):1777–87. https://doi.org/10.1093/carcin/21.10.1777.
Article
CAS
Google Scholar
Weigert A, Strack E, Snodgrass RG, Brune B. mPGES-1 and ALOX5/−15 in tumor-associated macrophages. Cancer Metastasis Rev. 2018;37(2–3):317–34. https://doi.org/10.1007/s10555-018-9731-3.
Article
CAS
Google Scholar
Al-Khami AA, Ghonim MA, Del Valle L, Ibba SV, Zheng L, Pyakurel K, et al. Fuelling the mechanisms of asthma: increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clin Exp Allergy. 2017;47(9):1170–84. https://doi.org/10.1111/cea.12947.
Article
CAS
Google Scholar
Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling Axis is essential for macrophage alternative activation. Immunity. 2016;45(4):817–30. https://doi.org/10.1016/j.immuni.2016.09.016.
Article
CAS
Google Scholar
Yu Y, Shi X, Zheng Q, Wang X, Liu X, Tan M, et al. Aberrant FGFR4 signaling worsens nonalcoholic steatohepatitis in FGF21KO mice. Int J Biol Sci. 2021;17(10):2576–89. https://doi.org/10.7150/ijbs.58776.
Article
CAS
Google Scholar
Zheng Q, Martin RC, Shi X, Pandit H, Yu Y, Liu X, et al. Lack of FGF21 promotes NASH-HCC transition via hepatocyte-TLR4-IL-17A signaling. Theranostics. 2020;10(22):9923–36. https://doi.org/10.7150/thno.45988.
Article
CAS
Google Scholar
Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008;Chapter 14:Unit 14 1 doi https://doi.org/10.1002/0471142735.im1401s83.